SYBASE

Administration Guide: Volume 2

Replication Server®

12.6

DOCUMENT ID: DC32518-01-1260-02
LAST REVISED: November 2006

Copyright © 1992-2006 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase software and to any subsequent release until otherwise indicated in new editions or technical notes.
Information in this document is subject to change without notice. The software described herein is furnished under alicense agreement,
and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customersin other countries with aU.S. license agreement may contact Customer Fulfillment via the above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, SYBASE (logo), ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Advantage
Database Server, Afaria, Answers Anywhere, Applied Meta, Applied Metacomputing, AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute,
APT-Trand ator, APT-Library, ASEP, Avaki, Avaki (Arrow Design), Avaki Data Grid, AvantGo, Backup Server, BayCam, Beyond Connected, Bit-Wise,
BizTracker, Certified PowerBuilder Developer, Certified SYBASE Professional, Certified SYBASE Professional Logo, ClearConnect, Client-Library, Client
Services, CodeBank, Column Design, ComponentPack, Connection Manager, Convoy/DM, Copernicus, CSP, Data Pipeline, Data Workbench, DataArchitect,
Database Analyzer, DataExpress, DataServer, DataWindow, DataWindow .NET, DB-Library, dbQueue, Dejima, Dejima Direct, Devel opers Workbench,
DirectConnect Anywhere, DirectConnect, Distribution Director, Dynamic Mobility Model, e-ADK, E-Anywhere, e-Biz Integrator, E-Whatever, EC Gateway,
ECMAP, ECRTP, eFulfillment Accelerator, Ell Plus, Electronic Case Management, Embedded SQL, EMS, Enterprise Application Studio, Enterprise Client/
Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise Portal (Iogo), Enterprise SQL Server Manager, Enterprise Work
Architecture, Enterprise Work Designer, Enterprise Work Modeler, eProcurement Accelerator, eremote, Everything Works Better When Everything Works
Together, EWA, ExtendedAssist, Extended Systems, ExtendedView, Financial Fusion, Financial Fusion (and design), Financial Fusion Server, Formula One,
Fusion Powered e-Finance, Fusion Powered Financial Destinations, Fusion Powered STP, Gateway Manager, GeoPoint, Globa FIX, iAnywhere, iAnywhere
Solutions, ImpactNow, Industry Warehouse Studio, InfoMaker, Information Anywhere, Information Everywhere, InformationConnect, InstaHelp, Intelligent
Self-Care, InternetBuilder, iremote, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase, Legion, Logical Memory Manager, IrLite, M2M Anywhere,
Mach Desktop, Mail Anywhere Studio, Mainframe Connect, Maintenance Express, Manage Anywhere Studio, MAP, M-Business Anywhere, M-Business
Channel, M-Business Network, M-Business Suite, MDI Access Server, MDI Database Gateway, media.splash, Message Anywhere Server, MetaWorks,
MethodSet, mFolio, Mirror Activator, ML Query, MobiCATS, MobileQ, MySupport, Net-Gateway, Net-Library, New Era of Networks, Next Generation
Learning, Next Generation Learning Studio, O DEVICE, OASIS, OASIS logo, ObjectConnect, ObjectCycle, OmniConnect, OmniQ, OmniSQL Access
Module, OmniSQL Toolkit, OneBridge, Open Biz, Open Business | nterchange, Open Client, Open ClientConnect, Open Client/Server, Open Client/Server
Interfaces, Open Gateway, Open Server, Open ServerConnect, Open Solutions, Optimat+, Partnershipsthat Work, PB-Gen, PC APT Execute, PC DB-Net, PC
Net Library, Pharma Anywhere, Physical Architect, Pocket PowerBuilder, PocketBuilder, Power++, Power Through Knowledge, power.stop, PowerAMC,
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, Powering the New Economy, PowerScript,
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop, PowerWare
Enterprise, ProcessAnalyst, Pylon, Pylon Anywhere, Pylon Application Server, Pylon Conduit, Pylon PIM Server, Pylon Pro, QAnywhere, Rapport, Relational
Beans, RemoteWare, RepConnector, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server, Replication Server
Manager, Replication Toolkit, Resource Manager, RFID Anywhere, RW-DisplayLib, RW-Library, SAFE, SAFE/PRO, Sales Anywhere, Search Anywhere,
SDF, Search Anywhere, Secure SQL Server, Secure SQL Toolset, Security Guardian, ShareLink, ShareSpool, SKILS, smart.partners, smart.parts, smart.script,
SOA Anywhere Trademark,SQL Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL
Everywhere, SQL Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server
SNMP SubAgent, SQL Station, SQLJ, Stage |11 Engineering, Startup.Com, STEP, SupportNow, S.W.I.F.T. Message Format Libraries, Sybase Central, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Financial Server, Sybase Gateways, Sybase L earning Connection, Sybase M PP, Sybase SQL
Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server Architecture, Sybase User Workbench,
SybaseWare, Syber Financial, SyberAssist, SybFlex, SybMD, SyBooks, System 10, System 11, System X| (logo), SystemTools, Tabular Data Stream, The
Enterprise Client/Server Company, The Extensible Software Platform, The Future Is Wide Open, The Learning Connection, The Model For Client/Server
Solutions, The Online Information Center, The Power of One, Total Fix, TradeForce, Transact-SQL, Trandlation Toolkit, Turning Imagination Into Reality,
UltraLite, UltraLite. NET, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viafone, Viewer, Visua Writer, VQL,
WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORK S, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit,
Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server, XcelleNet, XP Server, XTNDAccess and X TNDConnect are
trademarks of Sybase, Inc. or its subsidiaries. 07/06

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(2)(ii) of DFARS52.227-7013
for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., One Sybase Drive, Dublin, CA 94568.

Contents

CHAPTER 13 Verifying and Monitoring Replication Serverccccccvvvvvvvnnee. 425
Checking replication system log files for errors...........cccoccceennee. 426
Verifying a replication System..........cccocoiiiiiiiie i 426
Monitoring Replication SEerVerccccooooveeiiiie e 428

Verifying SErVer StatUSuueeiiiiiiiiiiiee e 429
Displaying replication system thread statusccc.vueee.. 430
Setting and using threshold [evelsccccocciiiiiiiiie, 432
Monitoring partition percentagescccccvvvvcvvveerieeenincviieen. 433

CHAPTER 14 Customizing Database OperationS..........ccoeeeeeiiiiieeeiiiiieeeeens 435
OVEIVIBW ...ttt ettt an e 435
Working with functions, function strings, and classes................... 436

0 Tox 1T o 437
Summary of system functionsccccccoiiiiiii i 440
FUNCLION SEHNGSeeeee e 442
System functions with multiple function strings.................... 444
FUuNCtion-string ClasSesccvviiiiiei i 445
System-provided ClasSEescccvvveeeeieiiiiiiiiee e 445
Function-string iNheritanCeccccvvvvveee i 447
Restrictions in mixed-version Systemscccccceveeerviivvneenn. 449
Managing function-string Classes.........ccccvccveeeiiiiiiiieeee e, 450
Creating a function-string Classcccccvvcviiieniee e, 451
Assigning a function-string class to a database 455
Dropping a function-string classcccccevvviivieeniee i, 456
Managing function StriNGSuvvviieeiiiiiiie e 457
Function strings and function-string classesccccceeu... 457
Function-string input and output templatesccccoeeee. 457
Using output templates.........cccvvvireeeeieiiiiiiiieee e 458
Using input temMPIates.........ccccvviiiiee e 460
Using function-string variablescccccoiiiiiiiiiiiiieee 462
Creating fuNCtion StriNgS..........ccccvvivieee e 464
Altering fUNCLION StHNGSvvvvvei i 466
Dropping function StriNgS.........cceeiiiiiiiiiiiie e 467
Restoring default function stringsccccccoovviiiieiiie i, 469

Administration Guide iii

Contents

CHAPTER 15

Creating empty function strings with the output template...... 470
Remapping table and column names with function strings ... 470

Defining multiple commands in a function string.................... 470
Using declare statements in language output templates....... 471
Displaying function-related informationcccccoceeiiiieieiienen. 472
Obtaining information using the admin command................. 472
Obtaining information using stored procedures..................... 473
Using the default system variablecccociiiiiii i, 473
Extending default function stringscccccvviiiieiiciieenceen. 474
Using replicate minimal columns.........ccccccovviviiiiiiees i, 475
Using function strings with text, image, and rawobject datatypes 475
Using output writetext for rs_writetext function strings.......... 476
Using output none for rs_writetext function strings 476
Managing Warm Standby Applicationsccccoovviieviiiniinnnnn. 479
OVEIVIEBW ...ttt 480
How a warm standby WOrkScccccveeiiiiiiiiiiiee i, 480
Database connections in a warm standby application 481
Primary and replicate databases and warm standby applications
481
Warm standby requirements and restrictions..............cc........ 483
Function strings for maintaining standby databases 484
What information is replicated?...........cccccveeeeeiiiiiiiieee e, 485
Comparing replication methods...........ccccccvveeeiiiiiiiiiiieeeeees 486
Using sp_reptostandby to enable replication 487
Using sp_setreptable to enable replicationccuveee. 490
Using sp_setrepproc to copy user stored procedures........... 491
Replicating tables with the same name but different owners 491
Replicating text, image, and rawobject data..............ccccoee..... 492
Changing replication for the current isql session................... 493
Setting up warm standby databasescccccceeiiiiieiiiiie e, 494
Before you begin ... 494
Task one: Creating the logical connectionccccccceen. 495
Task two: Adding the active database............ccccoceceeviienens 496
Task three: Enabling replication for objects in the active database
497
Task four: Adding the standby database...............ccccvveeeeenn. 498
Switching the active and standby databasescccccccceeeiinens 506
Determining if a switch is necessaryccccccceeeviiiiiiienneennn, 507
Before switching active and standby databases 507
Internal SWitChing StEPS ...ccvvveviiiiiiiiee e 508
After switching active and standby databases 509
Making the SWItCh..........ooooiiii e 509
Monitoring a warm standby application..............cccooeiiiiennen. 514

Replication Server

Contents

Replication Server log file..........ccooviiiiiiii e 514
Commands for monitoring warm standby applications.......... 515
Setting up clients to work with the active data server 516
Two interfaces fileS.......ooovviiii e 517
Symbolic data server name for client applications 517
Map client data server to currently active data server........... 518
Altering warm standby database connections..............ccccveeeeeennn. 518
Altering logical cONNECLIONS...........vvvviieeeiiiiiiiiee e, 518
Altering physical connections..........ccccccvvvviiiiiieee i, 521
Dropping logical database connections.............cccccccoevuvvneen.. 523
Warm standby applications using replicationccccvveeeeenn. 524
Warm standby application for a primary database................. 524
Warm standby application for a replicate database 526
Using replication definitions and subscriptionsc.....cccuvvveee.. 531
Creating replication definitions for warm standby databases 531
Using subscriptions with warm standby application 537
Missing columns when you create the standby database...... 541
LOSS detection and rECOVETYuvieeeiiiiiiiiiiiee e esiiireeee e e e 542
CHAPTER 16 Performance TUNINGoooveviiiiiiie e 543
Replication Server internal processing.......cccceevvvvvvveeeeeeesiiivnneenn. 543
Threads, modules, and daemons..........ccccovvveeeeiiieeeniiieeeee 544
Processing in the primary Replication Servercc........ 544
Processing in the replicate Replication Server...................... 549
Configuration parameters that affect performance....................... 551
Replication Server parameters that affect performance......... 551
Connection parameters that affect performance 555
Route parameters that affect performance..............ccccco.... 558
Suggestions for using tuning parameters...........cocccceeevieeeeeceenn. 559
Setting the amount of time SQM Writer waitsoo... 559
Caching system tablescccccee i 560
Setting wake up intervalscccccceeiiiiiiiiiiie e 560
Sizing the SQT CACNE........cocciiiiiiiie e 560
Controlling the number of network operations....................... 561
Controlling the number of outstanding bytes...........cc.....o... 562
Controlling the number of commands the RepAgent executor can
PrOCESS ...t 562
Specifying the number of stable queue segments allocated. 563
Selecting disk partitions for stable queues...........c..ccocccee. 563
Making SMP more effectivecccccvvvvieeeiiiciiieeee e, 563
Specifying the number of transactions in a group 564
Using parallel DSI threadsocooeeiiiiieeiiiee e 566
Benefits and FiSKSc.oooiiiiiiii 566
Parallel DSI parametersccccceveeeiiiiiieee e eeiiiieeee e 567

Administration Guide Vv

Contents

Components of parallel DS ... 570
Processing transactions with parallel DSI threads 570
Transaction serialization methods...........cccoocveeiiiieieniiieeens 572
Partitioning rules: reducing contention and increasing parallelism
576

Resolving conflicting updates..........cccccoiviieiiiie e 581
Configuring parallel DSI for optimal performance 587
Parallel DSI and the rs_origin_commit_time system variable 591
Using multiprocessor platforms............ccccvvvieeeeeeciiiiieeee e 592
Enabling multiprocessor SUPPOItcccevvviiiviveeeeeeiiiiiieeenn. 593
Monitoring thread StatuS...........ccccvvviiieeiiiiiiiiee e, 593
Monitoring PerforMancCecoccvvviiieeiieiiiiiiiie e 593
Allocating qUEUE SEQMENTSccceeviiiiiiiieee et 593
Choosing disk allocations............cccceevviiiiiiiiieeeeeeciiiiiiee e 595
Dropping hints and partitions...........ccccccevvviiiiiiieee e, 596
CHAPTER 17 Using Counters to Monitor Performancecccccccccvvvcceieeeennn. 597
[o (1T o] o SR 597
Modules and counters: an OVEIVIEW............cocueeeeeieeeeeaiieeaeeeeens 598
1Y o T L1 S 598
COUNTETS .. 599
Enabling sampling and flushingccccoiiiiii i 600
Enabling sampling of non-intrusive counters......................... 601
Enabling sampling of intrusive counters.............ccoecvvveeeeeenn. 602
Enabling fluShingcccvveiieiiii e 602
Configuring modules, connections, and routes...........cccccvveeviienes 603
Flushing for all modulescccovvivieiiiiiiiiie e, 603
Flushing for multithreaded modules............ccccceeeviiiiiinennenn. 604
Viewing information about the counters..........ccccccceveiiiiciiinennnnn, 605
Viewing current counter Valuesccceeririiieeeiiiee e 606
Viewing values flushed to the RSSD..........ccccoovcvviieieee e, 607
RESEttiNG COUNLETSeeiiiiiie et 608
dSTATS daemon threadccccooviiiiiiiii e 608
CHAPTER 18 Handling Errors and EXCEPtioNSccccoevevevieeeeeiieceeeeeeee e, 609
General error handlingooooeeieiiie e 609
Error 10g fil€S ...oeve i 610
Replication Server error [0g.......cocvvvvveeeeiiiiiiiiiee e 610
RepAgent error [0g MeSSAgES.......uuvvvieeeiiiiiiiiiieeeeeeiiiiieeeeens 613
Data server error handlingcvveeiiiiiiieiniee e 615
Creating an rror ClasSccvvvveeiiee e 615
Initializing @ NEW error Classccvvvvveeee i 616
Dropping @n error ClasSsSoovuvvieeiieeiiiiiiiiiee e 616

Vi Replication Server

Contents

Changing the primary Replication Server for an error class.. 617

Displaying error class informationccccceviiieieiieenenne. 618
Assigning actions to data Server errors........cccccceeeeecvveeeeeeenn. 618
Displaying assigned actions for error numbers 619
Exceptions handlingcooiuiiiiiiieiiiiii e 620
Handling failed transactionscccccvvveeeiiiiiiiiiiiee e 620
Accessing the exceptions 10gcuevveeiiiiiiiiiiiee e, 622
Deleting transactions from the exceptions 10g.............cc.vve.... 624

DSl duplicate deteCtionc..ueeevieiiiiiiiiiiieee e 625
Duplicate detection for system transactions..........cccccceecceeeeeienennn. 626
CHAPTER 19 Replication SysStem RECOVEIYuuvueuiiiiiieieiiieeeeeeeeeeeeeeeeeeeeinnns 627
How to USe recovery ProCedUrescccceervierrienirieniieeesreenneens 628
Configuring the replication system to support Sybase Failover ... 628
OVEIVIEBW .tiiiiiee ettt ettt e e e s s e e e e e e e e et ra e e e e e e e s annes 629
Enabling Failover support in Replication Server 629
Configuring the replication system to prevent data loss............... 633
Save interval for reCOVEIY.........uvvviiiiiiiiiiiiiieee e 633
Backing up the RSSDS........ccciiiiiiiiiiiiiee e 636
Creating coordinated dumpscccoeeviiiiiiiieees e 636
Recovering from partition loss or failure............cccvvveevieiiiiiinnnenn. 637
Procedure for recovering from partition loss or failure 638
Message recovery from off-line database logs...................... 640
Message recovery from the online database log................... 642
Recovering from truncated primary database l0gs 642
Truncated message recovery from the database log............ 643
Recovering from primary database failurescccoccoceien. 645
Loading from coordinated dumps.........ccceeceeeeinieeeeiieeee e 646
Loading a primary database from dumps..........ccccccoeceeeennnee. 647
Recovering from RSSD failurecccoccvvvviiiieiiiiiiiiiee e, 648
Recovering an RSSD from dumpsccccccoveivieenieeniiiiiieenn. 649
Basic RSSD recovery proCedUre........ccccveeviiiirieeeeeessiiinineenns 650
Subscription comparison procedure.........cccceevvvevvieereeeenininnns 652
Subscription re-creation procedurecccccoevvviiiiieieeeniinnns 659
Deintegration/reintegration procedure...........cccccvveeeriinvvnnnnn. 662
Recovery SUPPOrt tasKS.......oocvuveiiiie it 663
Rebuilding stable queues............ccccooiiiiiiiie e 663
APPENDIX A Asynchronous ProCeduresccccvviiiiviiie e 677
OVEIVIEBW ...ttt et e e et e e e e e e s s et e e e e e e s s annnes 677
Logging replicated stored procedures..........cccovvveeeeesiicnvnnnen. 678
Logging replicated stored restrictions............ccccceveeeevccnvvnenn. 678
Mixed-mode tranSactionscccoeccviiiieeeeeesiiiiieee e e 679

Administration Guide vii

Contents

APPENDIX B

APPENDIX C

viii

Applied stored ProCeAUIEScooviiiiiieiie et 679
Request Stored proCedUIESuuviieiiiiiiiiiiei e 680
Asynchronous stored procedure prerequisitesS...........oovcvvvveereennn. 681
Steps for implementing an applied stored procedure................... 682
Warning CoNditioNSc..oeeiiiiiiiiii e 684
Steps for implementing a request stored procedure 686
Specifying stored procedures and tables for replication 688
Managing user-defined functionscccccooiiiee e, 689
Creating a user-defined functioncccccoooiiiiiiiiie e 689
Adding parameters to a user-defined function 690
Dropping a user-defined functionccccccvveeiiiiiiiiiennenn, 691
Mapping to a different stored procedure name 691

Specifying a nonunique name for a user-defined function 693

LTM fOr SQL SEIVEN ..ceeiiiieiieee ittt a e 695
OVEIVIEBW ...ttt 696
Data flow for replication systems with LTMSccccccevveviiiiinnnenn. 696

LTIM PrOCESSING --.eeeeiueeeeiieieeeeaiieeeeantieeeaaneeeaeaeeeeesaeeeeeaanneeens 697
LTM processing data flowcccccevveeeeiiiiiiiieee e, 697
SQL Server LTM executable programcccceeeeeeeicieeesneeenn. 701
Shutting down an LTMoooiiiiiiiie e 701
Checking log files for errors..........ccceeevciviiieeeee e 701
Configuring and maintaining the LTMcoccooiiiiiiee e, 702
Adding a Replication Server........ccccccceviiiiiiiiiiiee i, 703
Preparing databases for replication............ccccccceevviiciiiieennnnn. 703
INterfaces file ... 704
LTM configuration fileccccccooviiiieiiee e, 705
Replication Server login name and password for the LTM.... 706
LTM login name and passwWordccooucvvveeeeeesiiniiineeeenens 706
SQL Server login name and password...........cccoocceeeeiieeene 707
Enabling and disabling password encryptionccc....... 707
Suspending and resuming log transferccccocooeiiiiieeinenen. 708
SUSPENAING LTMS ...eiiiiiiiiee et 708
RESUMING LTMS ..ot 709
Modifying replication systems with LTMScccoocoeeiiineeinnenn. 709
Configuring Replication Servers to manage primary tables .. 710
Changing replicate databases to primary databases............ 710
Changing primary databases to replicate databases............ 711
LTM error 10g information ... 712
LTM MeSSAgE tYPES ..ceveeeiiieieeeeeeee e 713

High Availability on Sun Cluster 2.2..........cccoiiiieiiiiiiees 717

INEFOUCTION .. 717

Replication Server

Contents

LI 1011 To] (oo) 718

TechnolOgY OVEIVIEWcc.ueiiiiiiiie e 719

Configuring Replication Server for high availability 720

Configuring Sun Cluster for HA ... 720

Installing Replication Server for HA............occoevie i, 721

Installing Replication Server as a data service...................... 722

Administering Replication Server as a data service.................... 725

Data service start/ShUtdowncoocvveiiiiiieiniiiie e 725

0T - F PP PPPPPPPPPPPPPPPPPIRY 725

(€10 =1=T- Y RO R PSSR 727
LYo L= 745

Administration Guide iX

Replication Server

CHAPTER 13

Administration Guide

Verifying and Monitoring
Replication Server

This chapter describes checking error logs, verifying that the components
of areplication system are running, and monitoring the status of system
components and processes.

Name Page
Checking replication system log files for errors 426
Verifying areplication system 426
Monitoring Replication Server 428
Setting and using threshold levels 432

The replication system includes data servers and Replication Servers. It
may a so include replication agents for heterogeneous data serversor Log
Transfer Managers for SQL Server. The replication agent for Adaptive
Server is RepAgent, an Adaptive Server thread.

Note If you are using areplication agent for a heterogeneous data server,
refer to replication agent documentation for your data server for
information about troubleshooting your replication agent.

Inafully operationa replication system, all data servers, Replication
Servers, replication agents, and their internal threads and other
components are running. This chapter tells you how to perform basic
troubleshooting tasks on the replication system, including:

1 Checking error logs for status and error messages.

2 Logging in to system servers and checking that al threads are
functioning, routes and connections are in place, and the interfaces
fileinformation is correct.

This chapter also describes how you can monitor Replication Server and
its threads and check partition threshold levels.

Refer to the Replication Server Troubleshooting Guide for detailed
information about monitoring and troubleshooting Replication Server.

425

Checking replication system log files for errors

Checking replication system log files for errors

RSM

The Replication Server records status and error messages, including internal
errors, in the Replication Server error log file. Use the admin log_name
command to display the path to the current log file. The default name for the
log fileisrepserver.log. You can change the default name by executing
repserver with the -E option and specifying the new log file name.

You can check the repserver.log files for any error messages by using Sybase
Central. You can also invoke shell scriptsbased on errorsreported in those logs
in Sybase Central.

See “Viewing the Error Log” in Replication Server’s plug-in help for
instructions on checking the information in the error logs in Sybase Central.

Internal errors are those where the only action available to Replication Server
isto dump the stack and exit. For diagnostic purposes, Replication Server
prints a trace of its execution stack in the log and leaves arecord of its state
when the error occurred.

M essages continue to accumulate in the error log files until you remove them.
For this reason, you may choose to truncate the log files when the Replication
Server is shut down. You can also close the Replication Server log file and
begin a new log file by using the admin set_log_name command.

The Replication Server log file contains messages generated during the
execution of asynchronous commands, such as create subscription and create
route, which continue processing after the commands complete. Whileyou are
executing asynchronous commands, pay special attentionto thelog filesfor the
Replication Servers affected by the procedure.

If alog fileisunavailable, important error information iswritten to the standard
error output file, which you can display on aterminal or redirect to afile.

Verifying a replication system

426

You need to verify that the entire replication system is working when you are
about to create replication definitions or subscriptions or when you are
performing diagnostics on your system. If you encounter errors, verifying your
system allows you to rule out the possibility that threads or components are not
running or that routes and connections are not properly set up.

Replication Server

CHAPTER 13 Verifying and Monitoring Replication Server

RSM

Administration Guide

See“Viewing the status of aserver or folder” and the other topicsin “ Using the
Topology View” in Replication Server’s plug-in help for information about
verifying areplication system using Sybase Central.

To make sure that Replication Server threads are running, you can execute
admin who_is_down, which displays only those threads that are not running.
Alternatively, execute admin who to display information about all threads. If no
threads are down, you can confirm that the replication system is working by
checking the following:

1

Verify that replication system servers and replication agents are running
and available.

At the primary site, log in to these servers:;

Data server with the primary database and its replication agent

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

Replication Server managing the primary database
RSSD (and its replication agent) for the primary Replication Server

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

At replicate sites, log in to these servers:

Data servers with replicate databases and, if request functions are
executed at these databases, their replication agents

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

Replication Servers managing replicate databases
RSSDs (and their replication agents) for replicate Replication Servers

If you are using Adaptive Server, execute sp_help_rep_agent at
Adaptive Server to display status information for RepAgent thread.

Use the admin show_connections command at Replication Server to verify
that these routes and connections are in place:

Routes from the primary Replication Server to each replicate
Replication Server

Database connection between the primary Replication Server and the
primary database

427

Monitoring Replication Server

Route from areplicate Replication Server to the primary Replication
Server, if the replicate Replication Server manages areplicate
database in which request functions are executed

Database connections between each replicate Replication Server and
its replicate database

Verify the accuracy of entriesin the interfacesfile.

When creating subscriptions, be sure an entry for the primary data server
existsin theinterfacesfile for the replicate Replication Server. (If you are
using atomic or non-atomic materialization, the replicate Replication
Server retrievesinitial rows through a direct connection to the primary
data server.)

Use the admin who command to verify that these Replication Server
threads are running:

Data Server Interface (DSI)

Replication Server Interface (RSI)
Distributor (DIST)

Stable Queue Manager (SQM)

Stable Queue Transaction interface (SQT)
RepAgent User

For detailed information about monitoring Replication Server threads,
refer to “ Displaying replication system thread status’ on page 430.

Monitoring Replication Server

While the replication system is in operation, you may need to monitor its
components and processes. This section describes how to:

428

Monitor replication system servers
Monitor DSI, RSI, and other thread status

Use system information commands to obtain information about various
aspects of the Replication Server.

Replication Server

CHAPTER 13 Verifying and Monitoring Replication Server

Verifying server status

Administration Guide

You can verify the status of your servers with these methods:
e Use Sybase Central.

RSM — See “Viewing the status of a server or folder” in Replication
Server’s plug-in help for instructions on verifying the status of your
servers using Sybase Central.

e Useisql tolog in to each server. If the login succeeds, you know that the
server isrunning.

« Createascript that logsin to and displays the status of each Adaptive
Server and its RepAgent thread, other replication agent (if any), and
Replication Server. Make sure all serversin the script are included in the
interfacesfile.

If alogin fails, it may be caused by one of the following problems:

Problem: You typed anincorrect name, or theinterfacesfile you are using does
not have an entry for the server.

DB-LIBRARY error:
Server name not found in interface file.

Problem: The server is running, but you specified an incorrect login name or
password.

DB-LIBRARY error:
Login incorrect.

Problem: The server is not running.

Operating-system error:
Invalid argument

DB-LIBRARY error:
Unable to connect: SQL Server is unavailable
or does not exist.

Problem: The interfaces file cannot be found.

Operating-system error:

No such file or directory
DB-LIBRARY error:

Could not open interface file.

Problem: Theinterfacesfileexists, but you do not have permission to accessit.

Operating-system error:
Permission denied
DB-LIBRARY error:

429

Monitoring Replication Server

Could not open interface file

Displaying replication system thread status

RSM

You can monitor general information on current Replication Server threads.
Table 13-1 describes threads that apply to database connections and routes and
the admin who command you use to monitor them.

See “Viewing thread status’ in Replication Server’s plug-in help for Sybase
Central instructions on monitoring threads.

Table 13-1: Monitoring Replication Server threads

Replication Server thread Command

Distributor (DIST) —uses SQT and SQM to read transactionsfrom theinbound admin who, dist

queue.

Data Server Interface (DSI) — submits transactions to data server. admin who, dsi

REP AGENT or LTM USER - verifies that transactions from the data server ~ admin who

are valid and writes them to the inbound queue.

Note Usesp_who or
sp_help_rep_agent to display
status of RepAgent thread at
Adaptive Server.

Replication Server Interface (RSl) —logs in to each destination Replication admin who, rsi
Server and transfers commands from the stable queue to the destination server.

Stable Queue Manager (SQM) — manages Replication Server stable queues. admin who, sqm

Stable Queue Transaction interface (SQT) —reads transactionsin aqueueand admin who, sqt
passes them to the SQT reader.

Refer to “admin who” in Chapter 3, “Replication Server Commands,” in the
Replication Server Reference Manual for details on the admin who command.
Refer to the Replication Server Troubleshooting Guide to interpret the
command output for troubleshooting purposes.

Using system information commands

430

In addition to admin who, Replication Server offers other admin commands to
assist you in monitoring Replication Server.

These commands are listed in Table 13-2. Refer to Chapter 3, “ Replication
Server Commands,” in the Replication Server Reference Manual for detailson
each command.

Replication Server

CHAPTER 13 Verifying and Monitoring Replication Server

RSM In Sybase Central, you can find additional information about monitoring your
replication system in “Monitoring a Replication System” in Replication
Server’s plug-in help.
Table 13-2: Overview of system information commands
Command Description

admin disk_space

Displays utilization of disk partitions accessed by the Replication Server.

admin echo

Determinesif theloca Replication Server is running.

admin get_generation

Retrieves the generation number for a primary database, used in recovery
operations.

admin health

Displays the overall status of the Replication Server.

admin log_name

Displays the path to the current log file.

admin logical_status

Displays the status of logical database connections, used in warm standby
applications.

admin pid

Displays the process ID of the Replication Server.

admin quiesce_check

Determinesif the queues in the Replication Server have been quiesced.

admin quiesce_force_rsi

Determines whether a Replication Server is quiescent. Also forces Replication
Server to deliver outbound messages.

admin rssd_name

Displays the names of the data server and database for the RSSD.

admin security_property

Displays security features of network-based security systems supported by
Replication Server.

admin security_setting

Displays network-based security settings of a particular target server.

admin set_log_name

Closes the existing Replication Server log file and opens anew log file.

admin show_connections

Displays information about all connections and routes to and from Replication
Server.

admin show_function_classes

Displays the names of existing function-string classes and their parent classes
and indicates the number of levels of inheritance.

admin show_route_version

Displays the version number of routes that originate at Replication Server and
routes that terminate at Replication Server.

admin show_site_version

Displays the site version of Replication Server.

admin sgm_readers

Displays information about threads that are reading the inbound queue.

admin statistics, flush_status

Displays flushing status for all counters.

admin statistics, md

Displays statistics about message delivery and counters.

admin statistics, mem

Displays statistics about memory utilization.

admin statistics, reset

Resets the message delivery statistics.

admin stats_config_connection

Controls flushing of metrics to the RSSD for connections.

admin stats_config_module

Enables or disables flushing of metrics to the RSSD for one or all modules.

admin stats_config_route

Controls flushing of metrics to the RSSD for routes.

admin stats_intrusive_counter

Administration Guide

Enables or disables sampling for intrusive counters.

431

Setting and using threshold levels

Command Description
admin version Displays which version of the Replication Server you are running, representing
the software version.

admin who

Displays information about all threads in the Replication Server.

admin who, dsi

Displays information about DS threads that connect to a data server.

admin who, rsi

Displays information about RSI threads that connect to other Replication
Servers.

admin who, sqm

Displays information about all queues managed by the SQM.

admin who, sqt

Displays information about al queues managed by the SQT.

admin who_is_down

Displays the same information as admin who, but only about threads that are
down.

admin who_is_up

Displays the same information as admin who, but only about threads that are
running.

Setting and using threshold levels

RSM

432

Stable queue partitions fill up when a Replication Server is receiving more
messages than it is sending. For example, if anetwork is down between a
primary site and a replicate site, the Replication Server at the primary site
queues up the undeliverable messages. When the network returnsto service,
the messages can be delivered, and then deleted from the primary Replication
Server’s partitions.

If apartition becomes completely full, senders cannot deliver their messagesto
the Replication Server, and messages begin to back up in the partitions at
previous sites and in the transaction logs for primary databases.

Warning! If the situation is not corrected, RepAgent is unable to update the
secondary truncation point in the database log, and the transaction log fills.
Clients are then unable to execute transactions at the primary database.

You can configure Replication Server to warn when partitions become too full
by setting three rowsin thers_config system table: sqm_warning_thr1,
sgm_warning_thr2, and sqgm_warning_thr_ind. These parameters are described
in Figure 16-2 on page 550.

See “Managing partition events’ in Replication Server’s plug-in help.

Replication Server

CHAPTER 13 Verifying and Monitoring Replication Server

Monitoring partition percentages

Administration Guide

Replication Server operateson IMB partition segments. Whenever it allocates
or deallocates a partition segment, it calcul ates these statistics:

e Percentage of total partition segmentsin use
« Percentage of total partition segmentsin use by the affected stable queue

If the percentage of partition segments in use rises above the percentage
specified by sgm_warning_thrl or sqm_warning_thr2, a message like the
following is written to the log file:

WARNING: Stable Storage Use is Above <threshold> percent

If you seethis message often, you may need to add partitionsto the Replication
Server or correct arecurring failure that causes the queues to fill.

When the first percentage drops below the percentage specified by
sgqm_warning_thrl or sgm_warning_thr2, amessage like thefollowing iswritten
to thelog file to note that the condition that caused the original warning no
longer exists:

WARNING CANCEL: Stable Storage Use is Below <threshold>
percent

The percentage of total partition segmentsin use by the affected stable queue
triggers the foll owing warning message when the percentage of the total space
used by a single stable queue exceeds the percentage specified by

sgm_warning_thr_ind:

WARNING: Stable Storage Use by <queue name> is Above
<threshold> percent

Thiswarning alerts you to problems that cause a particular stable queueto fill
until it is using a disproportionate share of the total partition space. For
example, if aroute is suspended for alength of time, its stable queue may fill
until it occupies enough partition space to trigger awarning.

When the percentage of the total partition space used by a stable queue drops
below the sgm_warning_thr_ind percentage, Replication Server writes a cancel
message like the following to the log file:

WARNING CANCEL: Stable Storage Use by <queue names> is
Below <threshold> percent.

433

Setting and using threshold levels

434 Replication Server

CHAPTER 14

Overview

Administration Guide

Customizing Database
Operations

This chapter explains how you can create and alter functions, function
strings, and function-string classesto allow replication definitionsto work
with database servers other than Adaptive Server.

Name Page
Overview 435
Working with functions, function strings, and classes 436
Function-string classes 445
Managing function-string classes 450
Managing function strings 457
Displaying function-related information 472
Using the default system variable 473
Using function strings with text, image, and rawobject datatypes 475

Replication Server translates commands from the primary database into
Replication Server functions that represent data server operations such as
insert, delete, select, begin transaction, and so on. It distributes these
functionsto remote Replication Serversin the system, where they execute
those operations in remote databases.

The primary Replication Server distributes functions in the same format
regardless of the type of data server that actually updates the replicated
data. Functionsare not database-specific. They includeall the dataneeded
to perform the operation, but they do not specify the syntax needed to
complete the operation at the destination data server.

435

Working with functions, function strings, and classes

The remote Replication Server converts functionsto commands specific to the
destination data serverswherethey are executed. A function string containsthe
database-specific instructions for executing a function. The replicate
Replication Server managing a database uses an appropriate function string to
map the function to a set of instructions for the data server. For example, the
function string for the rs_insert function provides the actual language to be
applied in areplicate database.

This separation between functionsand dataserver commands|etsyou maintain
replicated data among heterogeneous data servers. Replication Server allows
you to customizefunction strings, specifying how Replication Server functions
map to SQL commands. You can create function strings if you require
customized data server operations. You customi ze replicated data applications
by changing the way operations are performed at the destination database.

Function strings are grouped into function-string classes, so you can group
mappings of functions to commands according to data server. Replication
Server providesfunction-string classesfor Adaptive Server Enterprise, Oracle,
Informix, Microsoft SQL Server, Adaptive Server Anywhere, IMS, VSAM,
and DB2 databases. You can create new derived function-string classesin
which you customize certain function strings and inherit al others from these
or other classes. You can aso create entirely new classes in which you create
al new function strings.

You may also need to create function strings for replicated functions, which
alow you to execute stored procedures on remote databases. You must create
afunction string for any replicated function for which Replication Server does
not automatically generate afunction string in the function-string class used by
the destination database.

Working with functions, function strings, and classes

436

You can work with functions and function strings to customize database
operations in any of these ways:

« Createanew function-string class for use with a specific type of database,
and customize some or all of the function strings. See “Managing
function-string classes’ on page 450 for detailed information.

« For atomic materialization, use a function from a function-string class
associated with the primary database connection, not a function from the
function-string class associated with the replicate database connection.

Replication Server

CHAPTER 14 Customizing Database Operations

RSM

Functions

Administration Guide

e Alter function strings for the system-provided function-string class,
rs_sqlserver_function_class. See“Managing function strings’ on page 457
for detailed information.

e Create afunction-string class that inherits, either directly or indirectly,
function strings from the system-provided function-string class
rs_default_function_class.

¢ Usethe system-provided function-string classes for non-Sybase data
servers. rs_db2_function_class, rs_informix_function_class,
rs_mss_function_class, or rs_oracle_function_class. See “ Translating
datatypes using HDS” on page 319 for detailed information on datatype
trand ations using the heterogeneous datatype support (HDS) feature.

This section provides an overview of functions, function strings, and function-
string classes. The following sections include a summary of the system
functions, procedures, and guidelines for managing function strings and
function-string classes. They also summarize commands for displaying
information about the function strings and classes in the replication system.

You can work with functions, function strings, and classes using Sybase
Central or RCL commands. This chapter describes procedures and RCL
commands that you enter at the command line using isgl.

For information about using Sybase Central, see Replication Server’s plug-in
help.

Refer to Chapter 4, “ Replication Server System Functions,” in the Replication
Server Reference Manual for more information about the system functions.

Replication Server uses two major types of functions:
e System functions
e User-defined functions

You can create custom function strings for either type of function, depending
on your needs.

See “Managing function strings” on page 457 for more information about
when to customize function strings.

437

Working with functions, function strings, and classes

System functions

System functions represent data server operations whose function strings are
supplied by Replication Server or are available when you install a new
database on the replication system. Unless your application requiresit, you do
not need to customize function strings for system functions. The system-
provided class generates them for you.

System functions include:

¢ Functions that represent data-manipulation operations such as insert,
update, delete, select, and select with holdlock.

These system functions have replication-definition scope. See “Function
scope” on page 439 for details.

¢ Functions that represent transaction-control directives. These functions
include operations such as begin transaction and commit transaction.

These system functions have function-string-class scope. See “Function
scope” on page 439 for details.

See “Summary of system functions’ on page 440 for more information about
each type of system function.

User-defined functions

438

User-defined functions allow you to use Replication Server to distribute
replicated stored procedures between sitesin the replication system. You must
create function strings for user-defined functions unless you use a function-
string class that directly or indirectly inherits function strings from
rs_default_function_class. User-defined functions include:

¢ Functionsthat are used in replicating stored procedures associated with
function replication definitions. Replication Server automatically creates
auser-defined function of thistypewhen you create afunction-replication
definition.

See Chapter 10, “Managing Replicated Functions’ for details about
function-replication definitions and replicated stored procedures.

¢ Functionsthat are used in replicating stored procedures associated with
table-replication definitions. You create and maintain user-defined
functions of thistype yourself.

For details about replicated stored procedures that use table-replication
definitions, see Appendix A, “Asynchronous Procedures.”

Replication Server

CHAPTER 14 Customizing Database Operations

Function scope

Function-string-class
scope

Replication-definition
scope

Administration Guide

User-defined functions have replication-definition scope. See “Function
scope’ on page 439 for details.

Any function string that you create for a user-defined function should be
created at the primary Replication Server, where the replication definition was
created. If you are using function replication definitions, see a'so
“Implementing an applied function” on page 338 or “Implementing a request
function” on page 341.

The scope of afunction defines the object to which the function applies: either
to areplication definition or to a function-string class. Knowing afunction’s

scope isimportant for determining where to customize afunction string: at the
primary or replicate Replication Server. Functions can have one of two scopes:

* Function-string-class scope
* Replication-definition scope

A function with function-string-class scope is defined once for the class.
Functions with function-string-class scope include system functions that
represent transaction-control directives (such as rs_begin, rs_commit, or
rs_marker) and do not perform data manipulation. Function strings for user-
defined functions do not have class scope.

Function strings for functions with function-string-class scope must be
customized at the primary Replication Server for the function-string class. See
Table 14-1 on page 440 for alist of these functions. See “ Primary site for a
function-string class’ on page 453 for information on assigning aprimary site.

A function with replication-definition scope is defined once for a specific
table-replication definition or function-replication definition—although the
function may have multiple function strings.

Functions with replication-definition scope include:

e System functions that perform data-manipul ation operations (such as
rs_insert, rs_delete, rs_update, rs_select, rs_select_with_lock, and special
functions used in replicating text and image data).

See Table 14-2 for alist of these functions.

* User-defined functions for table- or function-replication definitions.

439

Working with functions, function strings, and classes

System functions with replication-definition scope must be customized at
the Replication Server where the replication definition was created. User-
defined functions with replication-definition scope must be customized at
the Replication Server where the replication definition was created.

Summary of system functions

The following tables provide a summary of the available system functions.
Refer to Chapter 4, “ Replication Server System Functions,” in the Replication
Server Reference Manual for complete documentation of all of the system
functions.

System functions with function-string-class scope

Table 14-1 lists the system functions with function-string-class scope.
Replication Server provides default generated function stringsfor each system-
provided class when you install the replication system.

Some functions are required for every Replication Server application, while
other functions only apply in particular cases, such as warm standby
applications, parallel DSI threads, or coordinated dumps.

If you use afunction-string class other than the default
(rs_sqlserver_function_class), and you are not using function-string
inheritance, you must create afunction-string for each system function you use
that has function-string class scope.

Customize function strings for system functions with class scope at the
Replication Server that is the primary site for the function-string class. See
“Changing the primary site for a function-string class’ on page 454 for more
information about assigning or changing the primary Replication Server for a
function-string class.

Table 14-1: System functions with function-string-class scope

Function name

Description

rs_begin

Begin atransaction.

rs_check_repl

Check if atable is marked for replication.

rs_commit

Commit atransaction.

rs_dumpdb

Initiate a coordinated database dump.

rs_dumptran

440

Initiate a coordinated transaction dump.

Replication Server

CHAPTER 14 Customizing Database Operations

Function name

Description

rs_get_charset

Return the character set used by a data server.

Samplefunction stringsfor replication into DB2 databases viaNet-Gateway are
installed in the Sybase release directory ininstall/rs_db2_setup.sample (UNIX
systems) and install\rs_2_db2.txt (Windows 2000, 2003 systems).

rs_get_lastcommit

Retrieve rows from the rs_lastcommit system table.

rs_get_sortorder

Return the sort order used by a data server.

Samplefunction stringsfor replicationinto DB2 databases viaNet-Gateway are
installed in the Sybase release directory ininstall/rs_db2_setup.sample (UNIX
systems) and install\rs_2_db2.txt (Windows 2000 and 2003 systems).

rs_get_thread_seq

Return the current sequence number for the specified entry in thers_threads
system table. This function is executed only when you are using parallel DSI.

rs_get_thread_seq_noholdlock

Return the current sequence number for the specified entry in thers_threads
system table, using the noholdlock option. Thisfunction is executed only when
you are using parallel DSI with isolation level 3 locking.

rs_initialize_threads

Set the sequence of each entry inthers_threads system tableto 0. Thisfunction
is executed only when you are using parallel DSI.

rs_marker

Help coordinate subscription materialization. The function passesiits first
parameter to Replication Server as an independent command.

rs_raw_object_serialization

Replicate Java columns as serialized data.

rs_repl_off

Set replication off in Adaptive Server for a standby database connection.

rs_rollback

Roll back atransaction.

rs_set_isolation_level3

Turn on transaction isolation level 3 locking in Adaptive Server. Thisfunctionis
executed only when you are using parallel DSI with isolation level 3 locking.

rs_set_proxy

Assume the permissions, login name, and server user 1D of the user.

rs_thread_check_lock

Determineswhether or not the DSI executor thread isholding alock that blocks
areplicate database process.

rs_triggers_reset

Set triggers off in Adaptive Server for a standby database connection.

rs_trunc_reset

Reset the secondary truncation point in warm standby databases. Thisfunction
is executed only when you create awarm standby database or when you switch
to a standby database.

rs_trunc_set

Set the secondary truncation point in warm standby databases. Thisfunctionis
executed only when you create awarm standby database or when you switch to
a standby database.

rs_update_threads

Update the sequence number for the specified entry inthers_threads table. This
function is executed only when you are using parallel DSI.

rs_usedb

Change the database context.

Administration Guide

441

Working with functions, function strings, and classes

System functions with replication-definition scope

Table 14-2 lists the system functions with replication-definition scope.
Replication Server provides default function strings for each system-provided
class when you create areplication definition.

Some functions are required for every Replication Server application, while
other functions only apply in particular cases, such as replication of text and
image datatypes, paralel DSI threads, or performing subscription
materialization or dematerialization.

Customize function strings for a system functions with replication-definition
scope at the Replication Server where the replication definition was created.

Table 14-2: System functions with replication definition scope

Function name

Description

rs_datarow_for_writetext

Provide an image of the data row associated with atext or image column updated
with a Transact-SQL writetext command or with
CT-Library or DB-Library functions.

rs_delete

Deletearow in atable.

rs_get_textptr

Retrieve the text pointer for atext, image, or rawobject column.

rs_insert

Insert arow into atable.

rs_select

Retrieve rows from atable for subscription materialization or dematerialization.

rs_select_with_lock

Retrieve subscription materialization or dematerialization rows using a holdlock.

rs_textptr_init

Allocate atext pointer for atext, image, or rawobject column.

rs_truncate

Truncate atable.

rs_update

Update arow in atable.

rs_writetext

Alter text, image, Or rawobject data.

Function strings

442

Function strings contain instructions for executing a function in a database.
These instructions may differ according to database. For example, a non-
Sybase database may require different instructions and have different function
strings than an Adaptive Server database.

Replication Server

CHAPTER 14 Customizing Database Operations

Functions strings come in two formats: language and RPC. A language-format
function string contains a command, such as a SQL statement, that the data
server parses. An RPC-format function string contains aremote procedure call
that executes aregistered procedure in an Open Server gateway application or
in an Adaptive Server database. Both function-string formats can contain
variablesthat get replaced with datavalues. What format afunction string uses
is determined by the type of data server and how you want Replication Server
to interact with it. See “Using output templates’ on page 458 for more
information.

Function strings are grouped into function-string classes. Each database
connection must be assigned a function-string class according to the type of
destination database. Replication Server provides function-string classes that
contain default function strings. Replication Server generates default function
strings for Adaptive Server, SQL Server, DB2, Informix, Microsoft SQL
Server, and Oracle function-string classes.

When you set up areplication system or add databases to the system, you
should anticipate your function-string requirements and decide how you will
use function-string classes and whether you need to customize function strings.
See “Function-string classes’ on page 445 for more information.

See “Managing function strings’ on page 457 for more information about
customizing function strings.

Input and output templates

Every function string uses an output template to instruct the destination
database in executing the function for a specific data server.

Function strings for the rs_select and rs_select_with_lock functions use both
input templates and output templates, which together perform subscription
materialization and dematerialization.

You customize function strings by atering their input and output templ ates.
You customize function strings for functions other than rs_select and
rs_select_with_lock by altering only the output template. How you alter a
function string depends on the function string’s format-language or RPC.

See “Function-string input and output templates’ on page 457 for more
information about input and output templates.

Applications for customized function strings

Administration Guide

You can customize function strings to:

443

Working with functions, function strings, and classes

Perform operationsin any native database |language (including those other
than Transact-SQL) by altering function-string output templates to format
the commands sent to a data server.

Materialize and dematerialize multiple subscriptions for the same
replication definition with a single function string.

Perform the following tasks by altering output templates for existing
system function strings:

¢ Record auditing information.
¢ Execute remote procedure calls (RPCs).
¢ Replicate datainto multiple replicate tables in the same database.

¢ Replicate datainto areplicate table with a different name, column
names, or column order than the primary table.

If the replicate Replication Server is of version 11.5 or later, you can
perform the same tasks more easily by creating a customized
replication definition that specifiesthe relevant information about the
replicate table. See “Creating multiple replication definitions per
table” on page 271 for more information.

System functions with multiple function strings

For the class-scope system functions, each function maps to a function string
within the class. Each replication-definition-scopers_insert, rs_delete, and
rs_update system function maps to a function string within the class for each
replication definition.

444

You can create multiple function-string instances for the same replication
definition for other system functions with replication-definition scope—
rs_select, rs_select_with_lock, rs_datarow_for_writetext, rs_get_textptr,
rs_textptr_init, and rs_writetext. In such cases, you must give each instance of a
function string a different name. System functions that can take multiple
function strings include:

rs_select and rs_select_with_lock functions —used in subscription
materialization and dematerialization when multiple subscriptions exist
for the same replication definition. You can give each instance of the
function string any namethat is unique for the replication definition. Each
instance of the function string corresponds to awhere clause used in
creating subscriptions for the replication definition.

Replication Server

CHAPTER 14 Customizing Database Operations

e rs_datarow_for_writetext, rs_get_textptr, rs_textptr_init, and rs_writetext
function each instance of the function string. You must name each instance
of afunction string for thetext or image column specified inthereplication
definition.

Function-string classes

Each function string belongs to a function-string class, which groups function
strings intended to be used with databases of asimilar type or with similar
reguirements. Replication Server assigns each database connection afunction-
string class according to the data server of the destination database.

Replication Server applies functionsto the database using the function strings
from its assigned function-string class. Function-string classes contain
function strings for system functions and for any user-defined functions.

You can use afunction-string class on multiple databasesif the function strings
can execute on all of the data servers. For example, a system with several
databases managed by Adaptive Server can users_sqlserver_function_class for
all the databases.

You can even use a single function-string class with heterogeneous data
servers, provided that the gateways that provide access to the various data
servers share acommon interface.

System-provided classes

Administration Guide

Several function-string classesare provided with Replication Server. Theseare
called system-provided classes.

* rs_sglserver_function_class — default Adaptive Server function strings are
provided for this class. The default function stringsin
rs_sqlserver_function_class areidentical to thosein
rs_default_function_class. rs_sglserver_function_class is assigned by
default to Adaptive Server databases you add to the replication system
using rs_init.

You can customize function strings for this class. However, this class
cannot participatein function-string classinheritance. |n most cases, using
derived classes that specify rs_default_function_class as a parent classis
preferable to using rs_sglserver_function_class directly.

445

Function-string classes

446

rs_default_function_class — default Adaptive Server function strings are
provided for this class. The default function stringsin
rs_sqlserver_function_class are identical to those in
rs_default_function_class.

You cannot customize function strings for this class. However, this class
can participate in function-string class inheritance. In most cases, using
derived classes that specify rs_default_function_class as a parent classis
preferable to using rs_default_function_class directly.

Note The system-provided function-string classes
rs_default_function_class and rs_sqlserver_function_class contain default
function strings for al system functions except rs_dumpdb and
rs_dumptran. If you need to use function strings for these functions you
must create them yourself in aderived classor in
rs_sqlserver_function_class.

rs_db2_function_class —DB2-specific function stringsare provided for this
class. See “Creating class-level trandlations’ on page 322 for more
information about using this class.

To alow rs_db2_function_class and other function-string classesto work,
issue the following commands:

alter connection to dataserver.database
set dsi_sqgl data_style to 'db2'

alter connection to dataserver.database
set dsi_cmd_separator to ';'

The rs_writetext function string of rs_db2_function_class was changed to
“output none.” rs_db2_function_class does not support replication of text
or image data. To achieve this functionality, customize the rs_writetext
function string using the RPC method through a gateway.

You cannot customize function strings for this class. If you require DB2
function strings, using derived classes that specify rs_db2_function_class
asaparent classis preferable, in most cases, to using this class directly.

rs_informix_function_class — Informix function stringsare provided for this
class. You cannot customize function strings for this class. See “ Creating
class-level trandations’ on page 322 for more information about using
this class.

Replication Server

CHAPTER 14 Customizing Database Operations

e rs_mss_function_class — Microsoft SQL Server function strings are
provided for this class. You cannot customize function strings for this
class. See “Creating class-level tranglations’ on page 322 for more
information about using this class.

e rs_oracle_function_class — Oracle function strings are provided for this
class. You cannot customize function strings for this class. See “Creating
class-level translations’ on page 322 for more information about using
this class.

Table 14-1 on page 440 illustrates function-string inheritance rel ationshipsfor
these and other classes.

Function-string inheritance

Administration Guide

The ability to share function-string definitions among classes by creating
relationships between classesis called function-string inheritance.

Using function-string inheritance in general, and inheriting from system-
provided classesin particular, provides both administrative and upgrade
benefitsto Replication System Administrators. Using classes that inherit from
system-provided classes, you alter only the function strings you want to
customize and inherit al others.

If you use classes that do not inherit from system-provided classes, you must
create all function strings yourself, and add new function stringswhenever you
create anew table or function replication definition.

A class that inherits function strings from a parent classis called aderived

class. A classfrom which aderived class inherits function stringsis called the
parent class of the derived class. Generally, you create aderived classin order
to customize certain function strings and inherit all othersfrom the parent class.

A class that does not inherit function strings from any parent classis called a
base class. The system-provided classes rs_default_function_class and
rs_db2_function_class, and any additional classesyou create that do not inherit
function strings from a parent class, are base classes. The system-provided
classesrs_informix_function_class, rs_msss_function_class,
rs_oracle_function_class are derived from rs_default_function_class.

A parent class can have multiplederived classes, whileaderived class can have
only one parent class. A derived class can also serve as the parent classfor one
or more derived classes. A set of derived classes of any number of levels
stemming from the same base classis called aclasstree.

447

Function-string classes

448

The system-provided classes rs_default_function_class and
rs_db2_function_class can serve as parent classesfor derived classes. However,
they cannot become derived classes of other parent classes.

The system-provided classrs_sglserver_function_class cannot serve asaparent
class or become a derived class.

A base class that you have created can be modified to become aderived class,
or it can be designated as the parent class for a derived class. A derived class
can be modified to inherit function strings from a different parent class, or it
can be detached from a parent class and become a base class.

For every base class that you create, you must provide function strings for the
functions that Replication Server invokes in each database to which the class
isassigned. If you assign afunction-string classto a database when some of the
function stringsfor system functionsare missing, the DSI reportsan error when
Replication Server triesto apply the function string, and suspendsthe database
connection.

Circular function-string inheritance relationships are disallowed. That is, a
parent class cannot be modified to inherit function strings from one of its own
derived classes or from a derived class of one of these derived classes.

Function-string class relationships areillustrated in Figure 14-1.

Replication Server

CHAPTER 14 Customizing Database Operations

Figure 14-1: Function-string class relationships

Cannot alter function strings Can alter function strings

— —

Can specify as parent class for Can specify as parent class

Adaptive Server or other database

rs-default_function_class Derived class for Adaptive Server/other

Cannot alter function strings . .
9 Can alter function strings

Can specify as parent class - . —
for DB2 Can specify as parent class

rs_db2_function_class Derived class for DB2

Can alter function strings

Cannot specify as parent class D System-provided class

(Compatible with RS 11.0.x) [] User-created class
rs_sqlserver_function_class —3p Inheritance by derived class

Must create/can alter function Can alter function strings

strings - —

Can specify as parent class
Can specify as parent class

User-created base class Derived class

Restrictions in mixed-version systems

In amixed-version system, only Replication Servers of version 11.5 or later
can work with classes that participate in function-string inheritance.

Administration Guide 449

Managing function-string classes

Any class whose primary site is Replication Server version 11.0.x cannot
participate in function-string inheritance. If you want to alter such a classto
become a derived class or use it as a parent class, you must move that class to
aprimary sitethat is Replication Server version 11.5 or later. Then you can
ater the classrelationshipsas desired and assign the class or its derived classes
to connections managed by Replication Server version 11.5 or later.

A base classthat you created in Replication Server version 11.5 or later and that
does not participate in function-string inheritance can be assigned to
connections managed by any Replication Server in the replication system. If it
is not assigned to any databases managed by Replication Server version 11.5
or later, then you can use the move primary command to assign it to a primary
site managed by Replication Server version 11.0.x.

Refer to the release bulletin for more information about compatibility between
Replication Servers.

Note For compatibility with Replication Servers of version 11.0.x, you may
need to continue to customize function stringsin rs_sglserver_function_class.
However, for databases managed by Replication Serversversion 11.5 or later,
using function-string inheritance and customizing function strings only in
derived classes is encouraged.

Managing function-string classes

450

When you create or customize a function string, you specify which classit
belongsto. If you want to create and use customized function strings, you can:

e Create aderived function-string class that inherits function strings from
rs_default_function_class, rs_db2_function_class,0r another parent class.
Then, in the derived class, create only the function strings that you are
interested in overriding.

Note You cannot alter, add to, delete, or change any of the function-string
classes for non-Sybase data servers.

e Create anew function-string class and create function strings for al
functions.

Replication Server

CHAPTER 14 Customizing Database Operations

¢ Customizefunction stringsinrs_sglserver_function_class. See*“Managing
function strings’ on page 457 for information on this option.

Before you create customized function strings, you should decide in advance
which of these approaches to take and set up your classes accordingly.
Generally, it is preferable to customize function strings in derived classes
rather than to customize function strings in the class
rs_sqlserver_function_class. You must be using Replication Server version 11.5
or later in order to create and deploy aderived function-string classthat inherits
function strings from other classes.

Creating a function-string class

RSM

Administration Guide

If function strings in an existing class do not serve your needs for particular
database connections, and customizing function stringsin an existing classis
not feasible, you can create a new class in which to create the function strings
you need. You can either:

* Create aderived class, one that inherits function strings from an existing
parent class.

* Createabaseclass, onethat does not inherit function strings from another
class.

For instructions on creating a derived or base function-string class in Sybase
Central, see* Creating function-string classes’ in Replication Server’s plug-in
help.

To create aderived or base function-string class and begin using it for a
database connection using RCL commands, follow these steps:

1 Createthe function-string class with the create function string class
command, using the syntax appropriate for your task. See:

* “Creating aderived class’ on page 452, or
* “Creating a base class’ on page 453.

The name of the new class must conform to the rules for identifiers
provided in “Identifiers” in Chapter 2, “Topics,” in the Replication Server
Reference Manual.

2 Createfunction strings for the new class with the create function string
command, described in “ Creating function strings’ on page 464.

451

Managing function-string classes

« If you are creating a derived class, you need create only the function
strings that you want to override and inherit al others from the
specified parent class.

¢ Theclassrs_default_function_class does not contain default function
strings for the rs_dumpdb and rs_dumptran functions. If you require
them in aderived class that inherits from rs_default_function_class,
you must create them. See “ System-provided classes’ on page 445
for more information.

e If you are creating a base class, you must create all the necessary
function strings for the class.

3 If you are preparing a new function-string class for an existing database

connection, you must suspend the connection before you can use the new
class. See “ Suspending database connections’ on page 177 for details.

4 Create or dter the database connection to use the new class. See

“Assigning afunction-string class to a database” on page 455.

5 If youatered an existing database connection to usethe new class, resume
the connection. See “ Suspending database connections’ on page 177 for
details.

Creating a derived class

452

To create a derived function-string class that inherits function strings from a
parent class, enter acommand like this at the primary site of the parent:

create function string class
sglserver derived class
set parent to rs_default function class

In thisexample, the new classsqglserver_derived_class inherits function strings
from the system-provided classrs_default_function_class. You can then create
function strings that override some of the inherited function strings.

You can specify as the parent class any existing class whose primary site runs
Replication Server version 11.5 or later. However, you cannot specify asa
parent class the system-provided class rs_sqlserver_function_class. You aso
cannot specify a parent class that would result in circular inheritance. See
“Function-string inheritance” on page 447 for details.

Replication Server

CHAPTER 14 Customizing Database Operations

If the parent classisrs_default_function_class or afunction-string classfor a
non-Sybase data server, you can enter this command at any Replication Server
with routes to the other Replication Servers where the new class will be used.
Thissiteisthe primary site for the derived class and any new classes derived
fromit.

If the parent classis auser-created class, enter thiscommand in the Replication
Server that isthe primary site for the parent class. Thissiteisthe primary site
for all classes derived from the parent class.

Creating a base class

To create a base function-string class, one which does not inherit function
strings from a parent class, enter acommand like this:

create function string class base class

Inthisexample, the new classbase_class doesnot inherit function stringsfrom
aparent class.

Enter this command at any Replication Server that has routes to the other
Replication Servers where the new class will be used. This site then becomes
the primary site for the class and for any derived classes for which this class
serves as the parent class.

A base class can be used as aparent classfor aderived class or can be modified
to become a derived class.

For every base class that you create, you must provide function strings for the
functions that Replication Server invokes in each database to which the class
is assigned.

If you create a base class and then ater it so it becomes a derived class before
actually using it with database connections, you do not have to create all the
function strings.

Primary site for a function-string class

Administration Guide

Although most function strings are executed in replicate databases, you
execute the create function string class command in a Replication Server,
usualy aprimary Replication Server, that has routes to al sites where the
function-string classis to be used. This command designates that Replication
Server as the primary site for the class. Function-string classes are replicated
viaroutes, along with other replication system data.

453

Managing function-string classes

You canonly create or alter function stringsthat have class scope at the primary
site for a class. Function strings with replication-definition scope must be
created or altered at the primary site for the replication definition.

By default, the classrs_sqlserver_function_class does not have a primary site.
To alter class-scope function strings for this class, you must first designate a
Replication Server as aprimary site for the class. To specify asite for this
function-string class, execute thefollowing command at the Replication Server
that isto be the primary site:

create function string class
rs_sqglserver function class

After you have executed this command, you can use the move primary
command to make further changes to the primary site for the function-string
class.

Changing the primary site for a function-string class

RSM

454

Use the move primary command or Sybase Central to change the primary
Replication Server for afunction-string class. For example, you may need to
changethe primary site from one Replication Server to another so that function
strings can be distributed through a new routing configuration. The new
primary site must include routes to all Replication Servers where the function-
string class will be used.

If you move a base class, al classes derived from that class move withit.

You cannot move the primary site for aderived class unlessits parent classis
adefault function-string class.

For instructions on changing the primary site in Sybase Central, see “Moving

afunction-string classto adifferent primary site” in Replication Server’s plug-
in help.

Execute move primary at the Replication Server that you want to designate as

the new primary site for the function-string class.

For example, the following command changes the primary site for the
sqlserver2_function_class function-string class to the SYDNEY_RS
Replication Server, where the command is entered:

move primary of function string class
sglserver2 function class
to SYDNEY RS

Replication Server

CHAPTER 14 Customizing Database Operations

If theclassrs_sqlserver_function_class hasnot yet been assigned aprimary site,
you cannot use the move primary command to assign one. You must use the
create function string class command to first designate a primary site for that
class. See* Changing the primary site for afunction-string class’ on page 454
for details.

Assigning a function-string class to a database

RSM

Example for creating
new connection

Administration Guide

You can assign afunction-string class to a database connection in Sybase
Central or with the create connection or alter connection commands, executed
in the Replication Server that manages the database. When you add a database
connection using the rs_init program, the classrs_sglserver_function_class is
assigned to the database by default.

For instructions on assigning a function-string class to a database in Sybase
Central, see “Assigning function-string classes to database connections’ in
Replication Server’s plug-in help.

You must suspend the connection to the database before you alter the function-
string class that is assigned to the database. The set function string class clause
of create connection and alter connection specifies the name of the function-
string class to use with the database.

Before you can assign a function-string class to a database connection:

» Thefunction-string class you specify must already exist and be available
to the Replication Server. See “ Creating a function-string class’ on page
451 for more information.

» All necessary function strings must be created in the class. See “ Creating
function strings’ on page 464 for details.

See “Creating database connections’ on page 174 and “ Altering database
connections’ on page 177 for more information about using the create
connection and alter connection commands. Also refer to reference pages for
these commands in the Replication Server Reference Manual.

Refer to the Replication Server installation and configuration guides for your
platform for more information about rs_init.

The following command creates a connection to the pubs2 database managed
by the TOKY O_DS data server:

create connection to TOKYO DS.pubs2
set error class tokyo error class
set function string class tokyo func class

455

Managing function-string classes

set username pubs2 maint
set password pubs2 maint pw

This command assigns the tokyo_func_class function-string class to the
database connection.

Example for altering The following command alters an existing database connection to specify a
an existing connection jifferent function-string class:

alter connection to TOKYO DS.pubs‘'2
set function string class tokyo_ func_class2

Dropping a function-string class

If you are surethat you will not need it again, you may want to drop afunction-
string class that you created from the replication system. You can drop any
function-string class except the three system-provided classes and any user-
created class that currently serves as a parent class. Before you can drop a
function-string class, you must drop all database connections that use the
function-string class, or you can ater the connections to use a different class.

Dropping afunction-string class deletes all function strings defined for the
class and removes al references to the class from the RSSD.

RSM For instructions on dropping a function-string class in Sybase Central, see
“Deleting function-string classes’ in Replication Server’s plug-in help.

Todrop afunction-string classfrom theisql command line, use thedrop function
string class command. For example, the following command drops the
tokyo_func_class function-string class and al of its function strings:

drop function string class tokyo func class

Enter this command in the Replication Server that is the primary site for the
class.

Refer to “drop function string class’ in Chapter 3, “Replication Server
Commands,” in the Replication Server Reference Manual for more
information.

456 Replication Server

CHAPTER 14 Customizing Database Operations

Managing function strings

Each destination Replication Server uses function strings to convert the
functions to commands that are appropriate for the destination data server
(such as Adaptive Server) before it submits these commands. See Chapter 2,
“Replication Server Technical Overview” for more information about DSI
threads, the components that perform this conversion at the replicate
Replication Server.

The following sections describe elements of function strings and the
commands for managing them. Refer to the Replication Server Reference
Manual for complete command syntax and permissions.

RSM For instructions on managing function stringsin Sybase Central, see* Function
Strings” in Replication Server’s plug-in help.

Function strings and function-string classes

If you do not require customized function strings, you can use one of the
system-provided function-string classes to provide default function strings. If
you require customized strings, you must use the system-provided class—
rs_sqlserver_function_class—in which you can customize function strings or
create aderived or base function-string class. See " Function-string classes’ on
page 445 for details.

« I the connection for the database in which the function will be executed
usesasystem-provided function-string classor aderived classthat inherits
directly or indirectly from rs_default_function_class or a function-string
classfor anon-Sybase dataserver, default function stringsare provided for
every system function and user-defined function.

» | the connection uses a user-created base function-string class (which
does not inherit function strings) or aderived classthat inherits from such
aclass, you must create function strings for every system function and
user-defined function. Create them in the base classif you want them to be
availablein all its derived classes.

Function-string input and output templates

To customize function strings, you alter their input and/or output templates.
Depending on thefunction, function stringsmay include both aninput template
and an output template, an output template, or neither template:

Administration Guide 457

Managing function strings

For thers_select and rs_select_with_lock functions, used in subscription
materialization, Replication Server uses input templates to locate the
function string that corresponds to a subscription’s where clause.

For al functions Replication Server uses output templates to map
functions to the language commands or to apply RPC invocations at the
destination data server.

Requirements for using input and output templates

When you alter templates to customize function strings, you should keep in
mind the following regquirements:

Function-string input and output templates are limited to 64K bytes. The
result of substituting runtime values for embedded variables in function-
string input or output templates must not exceed 64K.

Function-string input and output templates are delimited with single
quotation marks (").

Function-string variables are enclosed within apair of question marks (?).

A variable name and its modifier are separated with an exclamation mark

OF

Language output templates involve additional related requirements. See
“Using output templates’ on page 458 for details.

Using output templates

You ater output templates to customize function strings. Replication Server
uses output templates to determine the format of the command sent to a data
server. Most output templates use one of two formats: language or RPC,
corresponding to the format of the function string itself. (See “Function
strings’ on page 442 for information on function-string formats.) An output
template for an rs_writetext function string can use the RPC format or one of
the additional formatswritetext or none, but not alanguage output templ ate. See
“Using function strings with text, image, and rawobject datatypes’ on page
475 for details.

458

Replication Server

CHAPTER 14 Customizing Database Operations

Language output templates

Language output templates contain text that the data server interprets as
commands. Replication Server substitutesvaluesfor variablesembeddedinthe
output template and passes the resulting language command(s) to the data
server to process.

See* Creating function strings’ on page 464 for exampl e output templates. See
“Using function-string variables’ on page 462 for details on embedded
variables.

Within a language output template, Replication Server interprets certain
charactersin special ways:

« Two single quote characters () are interpreted as one single quote
* Two question marks (??) are interpreted as one single question mark
* Two semicolons (;;) are interpreted as one single semicolon

Other than the embedded variable substitutions and these special
interpretations, Replication Server does not attempt to interpret the contents of
language output templ ates.

See “Function-string variable formatting” on page 463 for information about
how Replication Server formats function-string variables when it maps
function strings to data server commands.

RPC output templates

Unlikelanguage output templ ates, Replication Server interpretsthe contents of
RPC output templates. They are written in the format of the Transact-SQL
execute command. Replication Server parses the output template to construct
aremote procedure call to send to the Adaptive Server, Open Server gateway,
or Open Server application.

RPC output templates work well with gateways or Open Servers with no
language parser. RPCs are usually more compact than language requests and,
since they do not require parsing by the data server, may al so be more efficient.
Therefore, you might choose to use an RPC even when a data server supports
language requests.

Output templates for rs_writetext function strings

Replication Server supports three output formats for creating an rs_writetext
function string: RPC, writetext, and none. The writetext and none output
templates can only be used in rs_writetext function strings.

Administration Guide 459

Managing function strings

See “Using function strings with text, image, and rawobject datatypes’ on
page 475 for more information about writetext and none.

Using input templates

460

Input templates are used only for non-bulk materialization and for
dematerialization with purge—those situations where Replication Server must
select datato add or delete from selected tables. rs_select and
rs_select_with_lock are the only function strings that can contain input
templates. Replication Server determines which function string to use with a
subscription during materialization or dematerialization by:

e Matching the subscription’s replication definition
e Matching theinput template with the where clause used in the subscription

rs_select and rs_select_with_lock also contain output templates to specify the
actual select statements or other operations that perform the desired
meaterialization or dematerialization.

For the system-provided classes, Replication Server generates default function
strings for the rs_select and rs_select_with_lock functions when you create a
replication definition. Generally, you only need to customize these function
strings if multiple subscriptions exist for your replication definition.

Function strings for the rs_select and rs_select_with_lock functions are most
often used for materialization. If you plan multiple subscriptions to the same
replication definition, create the function strings before you create the
subscriptions. See “ Subscription materialization methods’ on page 351 for
more information about subscription materialization.

Function strings for rs_select and rs_select_with_lock may also be used for
subscription dematerialization, which uses the where clause of the command
used to create the subscription. The function strings for these functions must
exist before you drop the subscriptions. See “ Using the drop subscription
command” on page 378 for more information about dematerialization.

Aninput template can contain user-defined variables whose val ues come from
constants in the where clause of a subscription. No other types of function-
string variables are allowed in input templates. An output template in the same
function string can reference these user-defined variables.

Replication Server

CHAPTER 14 Customizing Database Operations

If you need to customize an output template to select materialization data, you
can omit the input template from an rs_select or rs_select_with_lock function
string. Doing so creates adefault function string that can match any select
statement when no other function string’s input template matches the select
command.

Aswith other functions with replication-definition scope, you create function
strings for the rs_select and rs_select_with_lock functions in the primary
Replication Server where the replication definition was created.

Class in which to create function strings

Example for rs_select
function string

Administration Guide

When you create rs_select and rs_select_with_lock function strings for
materialization, you create them in the function-string class that is assigned to
the connection to the primary database from which you are selecting
materialization data. If you are using bulk materialization, you do not need to
create rs_select and rs_select_with_lock function strings for materialization.

When you create rs_select and rs_select_with_lock function strings for
dematerialization, you create them in the function-string class that is assigned
to the connection to the replicate database for which you are selecting data to
be dematerialized. If you drop a subscription using drop subscription with the
without purge option, you do not needrs_select andrs_select_with_lock function
strings for dematerialization.

Inthefollowing example, asite subscribesto aspecified publisher’sbook titles
through thereplication definitiontitles_rep. Theremust beanrs_select function
string with an input template that compares the publisher column in the pubs2
database's titles table to a user-defined value that identifies the publisher.

The create function string command creates a function string with an input
template that compares the publisher column pub_id to the user-defined
variable ?pub_id!user?. For details on function-string variables, see “Using
function-string variables’ on page 462.

The input template matches any subscription with awhere clause of the form
where pub_id = constant. As aresult, the output template, when it is used,
includes the constant value. The output template selects materialization data
from two different tables.

create function string titles_rep.rs_select;pub_id
for sqglserver2_function_ class

scan 'select * from titles where pub id =
?pub id!user?'

output language
'select * from titles where pub id =

461

Managing function strings

?pub id!user?

union

select * from titles.pending where pub id =
?pub_id!user?'

See “Creating function strings’ on page 464 for details. Refer to the
Replication Server Reference Manual for compl ete syntax.

Using function-string variables

Variables embedded in function-string input or output templates are symbolic
markers for various runtime values.

A variable can represent a column name, the name of a system-defined
variable, the name of a parameter in a user-defined function, or a user-defined
variable defined in an input template. The variable must refer to a value with
the same datatype as anything to which it is assigned.

Function-string variables are enclosed inside of apair of question marks(?), as
shown:

?variable!modifier?

The modifier portion of avariable identifies the type of datathe variable
represents. The modifier is separated from the variable name with an
exclamation point (!).

Replication Server recognizes the modifiers listed in Table 14-3:

Table 14-3: Function-string variable modifiers

Modifier

Description

new, new_raw

A reference to the new value of acolumn in arow that Replication Server is inserting or
updating.

old, old_raw

A reference to the old values of acolumn in arow that Replication Server isinserting or
updating.

user, user_raw

A referenceto avariable that is defined in the input template of an rs_select or
rs_select_with_lock function string.

Sys, Sys_raw

A reference to a system-defined variable.

param, param_raw

462

A reference to a stored-procedure parameter

Replication Server

CHAPTER 14 Customizing Database Operations

Modifier

Description

text_status

A reference to the text_status value for text or image data. Possible values are:

0x000 — Text field contains NULL value, and the text pointer has not been initialized.
0x0002 — Text pointer isinitialized.

0x0004 — Real text datawill follow.

0x0008 — No text datawill follow because the text datais not replicated.

0x0010 — Thetext datais not replicated but it contains NULL values.

Note Function strings for user-defined functions may not use the new or old
modifiers.

Refer to “create function string” in Chapter 3, “Replication Server
Commands,” in the Replication Server Reference Manual for alist of system-
defined variables that you can use in function-string input or output templates.

See “Using the default system variable” on page 473 for information on
applications for that system variable.

Function-string variable formatting

Administration Guide

When Replication Server maps function-string output templates to data server
commands, it formats the variables using the Adaptive Server format.

For most variables (except those special caseswith modifiersendingin _raw),
Replication Server formats data as follows:

» Addsan extrasingle-quote character to single-quote characters appearing
in character and date/time val ues.

» Addssingle-quote characters around character and date/time values, if
they are missing.

» Addsthe appropriate monetary symbol (for example, the dollar sign) to
values of money datatypes.

e Addsthe“0x” prefix to values of binary datatypes.

e Addsacombination of abackslash (\) and newline character between
existing instances of abackslash and newline character in character
values. Adaptive Server treats a backslash followed by anewlineasa
continuation character and, therefore, del etes the added pair of characters,
leaving the original characters intact.

463

Managing function strings

Replication Server does not alter datatypesin these waysfor modifiersthat end
in_raw.

Creating function strings

To add afunction string to a function-string class, use the create function string
command. Enter function-string commands at the primary site of the function
string:

For function strings with replication-definition scope, the primary siteis
the Replication Server where the replication definition was created.

For function strings with class scope, the primary site isthe Replication
Server that isthe primary site for the class. The primary site for aderived
classisthe sameasfor its parent class, unlessthe parent classis one of the
system-provided classes. See“ Primary sitefor afunction-string class’ on
page 453 for more information.

If you are using a derived function-string class whose parent classis not
provided by the system, you may choose to customize function stringsin the
parent class rather than in the derived class that is actually assigned to a
particular database connection. Doing so would make the customized function
strings available for any additional derived classes of that parent class.

Guidelines for creating function strings

Thefollowing guidelinesfor creating function strings pertain to function-string
classes:

If you need to customize function strings, you can do so in any class other
than the system-provided classes rs_default_function_class and
rs_db2_function_class.

You must assign a function-string class a primary site before you can
create function strings for the class. The system-provided class
rs_sqlserver_function_class has no primary site until you assign one using
the create function string class command.

If the function-string classis anew base class, you must create function
strings for all the necessary system functions before you can use the class.

The following guidelines pertain to function strings themselves:

464

Replication Server

CHAPTER 14 Customizing Database Operations

Example for rs_begin
function string

Example for rs_insert
function string

Administration Guide

* You can specify an optional namefor thefunction string. For thers_select,
rs_select_with_lock, rs_datarow_for_writetext, rs_get_textptr, rs_textptr_init,
and rs_writetext functions, Replication Server uses the function-string
name to uniquely identify the function strings. Function string names are
unique when you qualify them fully.

e If theinput template is omitted for an rs_select or rs_select_with_lock
function string, Replication Server matches any subscriptions that do not
have matching function strings.

e If you are customizing function strings for functions with replication-
definition scope, you must create the function strings before you create the
subscriptions.

* You can put several commands in alanguage output template, separating
them with semicolons. See “ Defining multiple commandsin afunction
string” on page 470 for details.

Make sure that the database connection batch parameter has been set to
alow command batching. See “Configuration parameters affecting
individual connections” on page 180.

¢ You can use Adaptive Server syntax to specify anull value for a constant
in afunction string.

Refer to “create function string” in Chapter 3, “Replication Server
Commands,” in the Replication Server Reference Manual for the complete
syntax for the create function string command.

The following example creates a function string for the rs_begin function that
begins a transaction in the database by executing a stored procedure named
begin_xact.

create function string rs begin
for gateway func class
output rpc 'execute begin xact'

The following example creates a function string for ars_insert function that
references the publishers_rep replication definition, which executes an RPC at
the replicate database as aresult of an insert in the primary table. The stored
procedure insert_publisher is defined only at the replicate database.

create function string publishers_rep.rs_insert
for rs_sqglserver function class
output rpc
'execute insert publisher
@pub id = ?pub id!new?,
@pub_name = ?pub name!new?,

465

Managing function strings

@city = ?city!new?,
@state = ?statelnew?’

Altering function strings

466

The alter function string command replaces an existing function string. alter
function string acts essentially the same as create function string except that it
executes the drop function string command first. The function string is dropped
and re-created in asingle transaction to prevent any errors from occurring asa
result of missing function strings.

You can ater afunction string using either the alter function string command or
the create function string command. To ater afunction string using the create
function string command, you must include the optional clause with overwrite
after the name of the function-string class. This command drops and re-creates
an existing function string, the same as the alter function string command.

To alter afunction string using the alter function string command, you must first
create afunction string.

In aderived class, first use the create function string command to override the
function string that is inherited from the parent class. You cannot alter a
function string in aderived class unless the function string has been explicitly
created for the derived class.

You ater function strings at the Replication Server that is the primary site for
the existing function string:

¢ For functions of replication-definition scope, ater the function string at
the primary Replication Server where the replication definition was
defined.

e Forfunctions of class scope, alter thefunction string at the primary sitefor
the function-string class. The primary site for a derived classis the same
asfor its parent class, unlessthe parent classis one of the system-provided
classes. See “Primary site for afunction-string class’ on page 453 for
more information.

For system functions that alow multiple function-string mappings, such as
rs_select and rs_select_with_lock, provide the compl ete function string namein
the alter function string Syntax. Replication Server uses the name to determine
which function string to alter.

See “ Creating function strings’ on page 464 for example function strings.

Replication Server

CHAPTER 14 Customizing Database Operations

RSM

Refer to “alter function string” in Chapter 3, “ Replication Server Commands,”
in the Replication Server Reference Manual for the complete syntax for the
alter function string command.

For instructions on atering function strings in Sybase Central, see “ Changing
function strings” in Replication Server’s plug-in help.

Dropping function strings

RSM

Examples

Administration Guide

To discard a customized function string in a derived class and restore the
function string from the parent class, drop the function string. Use the drop
function string command to remove one or more function stringsin a function-
string class.

Warning! If you want to drop and re-create afunction string, use alter function
string to replace an existing function string with a new one. Dropping and then
re-creating a function string by other methods can lead to a state where the
function string is temporarily missing.

If atransaction that uses this function string occurs between the time the
function string is dropped and the time it is re-created, Replication Server
detects the function string as missing and fails the transaction.

When you drop the function string from a derived class, you restore the
function string from the parent class.

For instructions on dropping function stringsin Sybase Central, see “ Deleting
function strings” in Replication Server’s plug-in help.

Refer to “drop function string” in Chapter 3, “ Replication Server Commands,”
in the Replication Server Reference Manual for more information on this
command.

You can also drop customi zed function strings from the system-provided class
rs_sqlserver_function_class.

To restore adefault function string for afunction string with replication-
definition scope that you have dropped, use the alter function string command
to omit the output clause. See“ Restoring default function strings” on page 469
for details.

The following command drops the rs_insert function string for the
publishers_rep replication definition in the class sglserver2_func_class:

drop function string

467

Managing function strings

Dropping all function
strings for a function

Examples of using the
all keyword as
shorthand

468

publishers rep.rs insert
for sglserver2 func class

The following command drops the pub_id instance of a function string for the
rs_select function for the publishers_rep replication definition in the class
derived_class. Drop function strings for the rs_select_with_lock functionin a
similar way.

drop function string
publishers rep.rs select;pub_ id
for derived class

The following command drops the rs_begin function string from the
gateway_func_class function-string class:

drop function string rs_begin
for gateway func class

In cases where there are multiple function strings for a specified function, you
can drop al function strings for that function simultaneously.

The following command drops all function strings for the rs_select_with_lock
function that references the publishers_rep replication definition in the class
sqlserver2_func_class:

drop function string
publishers rep.rs select with lock;all
for sglserver2 func_class

System functions that can have multiple function string mappings include the
rs_select, rs_select_with_lock, rs_get_textptr, rs_textptr_init, Or rs_writetext
functions.

When dropping function strings for any system function for which you
provided alengthy name, you can use the all keyword as shorthand for the
name of the function string instance. For example, the following command
gives along name for a function string:

create function string
publishers_rep.rs_insert;my insert_function string
for sglserver2 func class

In this case, the following command drops the function string without you
having to enter the fully qualified name:

drop function string
publishers rep.rs_insert;all
for sglserver2 func_class

Replication Server

CHAPTER 14 Customizing Database Operations

Restoring default function strings

RSM

Example for alter
function string

Example for create
function string in a
derived class

Administration Guide

To restore the Adaptive Server default function string for a system function
with replication definition scope, omit the output clause in the create function
string Or alter function string command. You cannot omit an output template
from a system function with function-string-class scope, although you can
specify an empty template.

For instructions on restoring default function strings in Sybase Central, see
“Reverting to original function strings” in Replication Server’s plug-in help.

In al classes, even derived classes, executing the create function string or alter
function string command without the output clause restores the same function
string that is provided by default for the system-provided classes
rs_sqlserver_function_class and rs_default_function_class.

The default function-string definition this method yields may or may not be
appropriate for the databases to which you have assigned the class. This
method may be most helpful when you are using a customized
rs_sqlserver_function_class or when you are using other user-created base
classes for Adaptive Server databases.

In aderived class, if you want to discard a customized function string and
restore the function string from the parent class, drop the function string. See
“Dropping function strings’ on page 467 for details.

Thefollowing command replaces acustomized rs_insert function string for the
publishers_rep replication definition with the default function string:

alter function string publishers_rep.rs_insert
for rs sglserver function class

See “Altering function strings’ on page 466 for details on using the alter
function string command.

You can use this method in a derived function-string class to override an
inherited function string with the Adaptive Server default function string. The
following command replaces an inherited rs_insert function string for the
publishers_rep replication definition with the default function string:

create function string publishers rep.rs insert
for derived class

See “Creating function strings’ on page 464 for details on using the create
function string command.

469

Managing function strings

Creating empty function strings with the output template

You can create an empty function string—one that performs no action—by
including the output language clause with an empty function string specified
with two single quotes.

For example, the following command defines no action for thers_insert
function string for the publishers_rep replication definition:

alter function string publishers rep.rs insert
for derived class
output language ''

See “Altering function strings’ on page 466 for details on using the alter
function string command.

Remapping table and column names with function strings

You can use function stringsto trand ate the table name and column names for
areplicated table to names other than those specified in the replication
definition. The function strings that Replication Server generates for the
rs_sqlserver_function_class function-string class use the names specified by the
replication definition for the table, but you can define your own function
strings with any namesyou like.

This procedureis useful if asite has existing client applications that use
different table and column names than those defined by the replication
definition for the primary data. Customizing function strings allows
Replication Server to maintain the datain the table and does not require that
you alter the site’s applications.

Todo this, you can use either language function strings or RPC function strings
with Adaptive Server stored procedures at the remote site.

Defining multiple commands in a function string

470

Language output templates can contain many commands. Adaptive Server
permits multiple commandsin abatch. Although most other data serversdo not
offer thisfeature, Replication Server allowsyouto batch commandsin function
strings for any data server by separating commands with a semicolon (;).

Use two consecutive semicolons (;;) to represent a semicolon that is not to be
interpreted as a command separator.

Replication Server

CHAPTER 14 Customizing Database Operations

If the data server supports command batches, Replication Server replaces the
semicolons with the DSI command separator character (dsi_cmd_separator
configuration parameter), as necessary, and submits the commandsin asingle
batch.

If the data server does not support command batches, Replication Server
submits each command in the function string separately.

For example, the output template in the following function string contains two
commands:

create function string rs_commit

for sglserver2 function class

output language

'execute rs_update lastcommit
@origin = ?rs_originl!sys?,
@origin gid = ?rs_origin gid!sys?,
@secondary gid = ?rs_secondary gid!sys?;
commit transaction'

Support for batches is enabled or disabled in Replication Server with the alter
connection command.

Set batch to “on” to allow command batching for a database, or set it to “ off”
to send individual commands to the data server. The default is “on.”

To set batching “on” for this example, enter:

alter connection to SYDNEY_DS.pubs2
set batch to 'on'

To set batching “off,” enter:

alter connection to SYDNEY_DS.pubs?2
set batch to 'off'

Using declare statements in language output templates

Administration Guide

To include declare statements, used to define local variables, in the language
output templates, make sure that the batch configuration parameter is set to
“off” for the Replication Server connected to the database. When batch is set
to “on” (the default), Replication Server can send multiple invocations of a
function string to the data server as a single command batch, thereby putting
multiple declarations of the same variable in that batch, which is unacceptable
to Adaptive Server.

471

Displaying function-related information

Performance is slower when batch mode is off because Replication Server
must wait for aresponse to each command before the next oneis sent. If your
performance requirements are low, you can use declare statementsin your
function stringsif you set batch to “ off.” Alternatively, if you want to use batch
mode for improved performance, create function-string language output
templatesthat execute stored procedures, which can include declare statements
and other commands.

Refer to “ Setting and changing parameters affecting physical connections” on
page 178 for more information about batch.

Displaying function-related information

RSM

You can obtain information about existing function strings and classesin your
replication system in two ways:

¢ Using Replication Server admin command
e Using Adaptive Server stored procedures

For instructions on viewing information about function strings and classesin
Sybase Central, see “ Viewing function string properties’ in Replication
Server’s plug-in help.

Obtaining information using the admin command

sgl derived class
rs_db2 derived class

472

You can display the names of the function-string classes used in your
Replication Server system using one of Replication Server’sadmin commands.

Use admin show_function_classes to display the names of existing function-
string classes and their parent classes. It also indicates the inheritance level of
the class. Level 0 isabase class such asrs_default_function_class or
rs_db2_function_class, level 1isaderived classthat inherits from abase class,
and so on.

For example:
admin show_function classes
ParentClass Level
rs_default function class 1
rs_db2 function class 1

Replication Server

CHAPTER 14 Customizing Database Operations

rs_db2 function class 0

For more information about this command, see Chapter 3, “Replication Server
Commands,” in the Replication Server Reference Manual.

Obtaining information using stored procedures

You can obtain information about existing functions, function strings, and
function-string classesin your system using stored proceduresin aReplication
Server's RSSD.

Refer to Chapter 6, “ Adaptive Server Stored Procedures,” in the Replication
Server Reference Manual for more information about these stored procedures.

rs_helpfunc rs_helpfunc displays information about system functions and user-defined
functions for a Replication Server or for a particular table or function
replication definition. The syntax is:

rs_helpfunc [replication_definition [, function_name]]

rs_helpfstring rs_helpfstring displays the parameters and function-string text for functions
associated with areplication definition. The syntax is:

rs_helpfstring replication_definition
[, function_name]

rs_helpclass rs_helpclass lists al function-string classes and error classes and their primary
Replication Servers. The syntax is:

rs_helpclass [class_name]

rs_helpclassfstring rs_helpclassfstring displays the function-string information for class-scope
functions. The syntax is:

rs_helpclassfstring class_name [, function_name]

Using the default system variable

Thers_default_fs system variable allows you to perform the following tasks:

» Extend function strings with replication-definition scope to include
additional commands (such as those for auditing or tracking)

Administration Guide 473

Using the default system variable

e Customizers_update and rs_delete function strings and still be ableto use
the replicate minimal columns option in your replication definitions

Note Function strings containing the rs_default_fs system variable may only
be applied on Adaptive Servers or data servers that accept Adaptive Server
syntax. Otherwise, errorswill occur.

Refer to “create function string” in Chapter 3, “ Replication Server
Commands,” in the Replication Server Reference Manual for acompletelist of
function string system variables.

Extending default function strings

474

You canusethers_default_fssystem variablewith all function stringsthat have
replication-definition scope (table or function) as away to extend the default
function-string behavior.

Usingthers_default_fs system variable reduces the amount of typing required
when you want to keep the functionality of the default function string intact and
include additional commands. For example, you can add commands to extend
the capabilities of the default function string for auditing or tracking purposes.

Commandsthat you add to the output language templ ate may either precede or
follow thers_default_fs system variable. They may or may not affect how the
row is replicated into the replicate table.

The following example shows how you might use the rs_default_fs system
variable in the create function string command (or the alter function string
command) to verify that an update has occurred:

create function string replication definition.rs_update
for function string class
output language '?rs_default fs!sys?;

if (@@rowcount = 0)
begin
raiserror 99999 "No rows updated!"
end'

In thisexample, thers_default_fs system variable, embedded in the language
output template, maintains the functionality of the default rs_update function
string while the output template then checks to see if any rows have been
updated. If they have not been updated, Replication Server raises an error.

Replication Server

CHAPTER 14 Customizing Database Operations

In this example, the commands that follow the system variable do not affect
how the row isto be replicated at the replicate site. You can use the
rs_default_fs system variable with similar additional commands for
verification or auditing purposes.

Using replicate minimal columns

If you have specified replicate minimal columns for a replication definition, you
normally cannot create non-default function strings for the rs_update,
rs_delete, rs_get_textptr, rs_textptr_init, Or rs_datarow_for_writetext System
functions.

You can create non-default function strings for the rs_update and rs_delete
functions by embedding the rs_default_fs system variable in the output
language templ ate of the create function string or alter function string commands
and still use the minimal columns option.

You cannot use any variables, including thers_default_fs system variable, that
access non-key column valuesin rs_update or rs_delete function strings for
replication definitions that use the minimal columns option. When you create
such afunction string, you may not know ahead of time which columnswill be
modified at the primary table. You may, however, include variablesthat access
key column values.

See “create replication definition” in Chapter 3, “ Replication Server
Commands,” inthe Replication Server Reference Manual for moreinformation
about the replicate minimal columns option.

Using function strings with text, image, and rawobject

datatypes

RSM

Administration Guide

In an environment that supports text, image, and rawobject datatypes, you can
customize function strings for the rs_writetext function using the output
template formats writetext or none. The methods discussed in this section can
only be used with rs_writetext function strings.

For instructions on using text, image, and rawobject datatypes in function
stringsin Sybase Central, see* Customizing function stringsfor text and image
columns” in Replication Server’s plug-in help.

475

Using function strings with text, image, and rawobject datatypes

For Replication Server version 11.5 or later, you can use multiple replication
definitions instead of function strings. See Chapter 9, “Managing Replicated
Tables” for information about multiple replication definitions.

Using output writetext for rs_writetext function strings

The writetext output template option for rs_writetext function strings instructs
Replication Server to usethe Client-Library function ct_send_data to update a
text, image, or rawobject column value. It specifieslogging behavior for text,
image, and rawobject columns in the replicate database.

writetext output templates support the following options:

e use primary log — logs the datain the replicate database, if the logging
option was specified in the primary database.

¢ with log —logs the datain the replicate database transaction log.

¢ no log —does not log the data in the replicate database transaction log.

Using output none for rs_writetext function strings

The none output template option for rs_writetext function strings instructs
Replication Server not to replicate atext or image column value. This option
provides necessary flexibility for using text and image columns within a
heterogeneous environment.

Heterogeneous replication and text, image, and rawobject data

476

To replicate text, image, and rawobject data from aforeign data server into an
Adaptive Server database, you must include the text, image, and rawobject data
in the replication definition so that a subscription can be created for the
Adaptive Server database. However, you might not want to replicate the text,
image, and rawobject data into other replicate data servers, whether they are
other foreign data servers or other Adaptive Servers.

With the none output template option, you can customize rs_writetext function
strings to map operationsto asmaller table at areplicate site and to instruct the
rs_writetext function string not to perform any text, image, or rawobject
operation against the replicate site.

Replication Server

CHAPTER 14 Customizing Database Operations

Example

Administration Guide

Thereis one rs_writetext function string for each text, image, and rawobject
column in the replication definition. If you do not want to replicate a certain
text, image, Or rawobject column, customize the rs_writetext function string for
that column. Specify the column name in the create or alter function string
command, as shown in the exampl e below. You may also need to customize the
rs_insert function string.

Assumethat areplication definition does not allow null valuesin atext, image,
or rawobject column and that you do not require certain text, image, or rawobject
columns at the replicate site.

If inserts occur in those columns at the primary site, you must customize the
rs_writetext function strings for the text, image, or rawobject columns that are
not needed at the replicate site. You must al so customize thers_insert function
string for the replication definition.

For example, assume that you have primary table foo:

foo (int a, b text not null, ¢ image not null)
In foo, you perform the following insert:

insert foo values (1, "111111", 0x11111111)

By default, Replication Server trandates rs_insert into the following form for
application by the DSI thread into the replicate table foo:

insert foo (a, b, ¢) values (1, "", "")
The DSI thread calls:
* ct_send_data to insert text data into column b
e ct_send_data to insert image datainto column c

Because null valuesare not allowed for thetext column b and theimage column
c, the DSI thread shuts down if the replicate table does not contain either
column b or column c.

If the replicate table only contains columns a and b, you need to customize the
rs_writetext function for column ¢ to use output none, as follows:

alter function string foo_repdef.rs_writetext;c
for rs_sqlserver_function_class
output none

You must specify the column name (c in this example) as shown to alter the
rs_writetext function string for that column.

477

Using function strings with text, image, and rawobject datatypes

478

If thereplicatetable only contains columnsa and b, you a so need to customize
the rs_insert function string for the replication definition so that it will not
attempt to insert into column c, asfollows:
alter function string foo_repdef.rs_insert

for rs_sqlserver_function_class

output language

'insert foo (a, b) values (?alnew?, ™)'
You do not have to customize rs_insert if the replication definition specifies
that null values are allowed for column c. By default, rs_insert does not affect
any text or image columns where null values are allowed.

Replication Server

CHAPTER 15

Administration Guide

Managing Warm Standby
Applications

This chapter describes one way to create and manage a warm standby
application using Replication Server.

Name Page
Overview 480
What information is replicated? 485
Setting up warm standby databases 494
Switching the active and standby databases 506
Monitoring awarm standby application 514
Setting up clients to work with the active data server 516
Altering warm standby database connections 518
Warm standby applications using replication 524
Using replication definitions and subscriptions 531
L oss detection and recovery 542

This chapter describes how to set up and configure a warm standby
application between two Adaptive Server databases—the primary or
active database and a single standby database. Changes to the primary
database are copied directly to the warm standby database. To change or
qualify the data sent, you must add table and function replication
definitions.

You can aso use multi-site availability (MSA) to set up awarm standby
application between Adaptive Server databases. MSA enablesreplication
to multiple standby and replicate databases. You can choose whether to
replicate the entire database or replicate (or not replicate) specified tables,
transactions, functions, system stored procedures, and data definition
language (DDL). See Chapter 12, “Managing Replicated Objects Using
Multi-Site Availability,” for information about setting up awarm standby
application using MSA.

479

Overview

Overview

A warm standby application isapair of Adaptive Server or SQL Server
databases, one of which isabackup copy of the other. Client applications
update the active database; Replication Server maintains the standby
database as a copy of the active database.

If the active databasefails, or if you need to perform maintenance on the active
database or on the data server, a switch to the standby database allows client
applications to resume work with little interruption.

To keep the standby database consistent with the active database, Replication
Server reproduces transaction information retrieved from the active database’s
transaction log. Although replication definitions facilitate replication into the
standby database, they are not required. Subscriptions are not needed to
replicate data into the standby database.

How a warm standby works

480

Figure 15-1 illustrates the normal operation of an example warm standby
application.

Figure 15-1: Warm standby application

Clients

Replication Server

Standby
Database Database

'

to other Replication Servers
or destination databases

In this warm standby application:

e Client applications execute transactions in the active database.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

« TheRepAgent for the active database retrieves transactions from the
transaction log and forwards them to Replication Server.

* Replication Server executes the transactions in the standby database.

* Replication Server may a so copy transactions to destination databases
and remote Replication Servers.

See Figure 15-4 on page 507 for more detail s about the components and
processes in awarm standby application.

Database connections in a warm standby application

In awarm standby application, the active database and the standby database
appear in the replication system as a connection from the Replication Server to
asingle logical database. The Replication System Administrator creates this
logical connection to establish one symbolic name for both the active and
standby databases.

Thus, awarm standby application involvesthree database connectionsfromthe
Replication Server:

» A physical connection for the active database
* A physical connection for the standby database
* Alogical connection for the active and standby databases

Replication Server mapsthelogical connection to the currently active database
and copies transactions from the active to the standby database.

See “ Setting up warm standby databases’ on page 494 for details on creating
the logical and physical database connections. See Chapter 7, “Managing
Database Connections’ for more information about physical database
connections.

Primary and replicate databases and warm standby applications
In many Replication Server applications:

« A primary database is the source of datathat is copied to other databases
through the use of replication definitions and subscriptions.

* A dedtination database receives datafrom the primary (source) database.

Administration Guide 481

Overview

Replication Server treatsalogical databaselike any other database. Depending
on your application, the logical database in awarm standby application may

function as:

e A primary database, or

e A replicate database, or

¢ A database that does not participate in replication

See “ Switching the active and standby databases’ on page 506 for more
information about warm standby applications that do not participate in

standard replication.

See “Warm standby applications using replication” on page 524 for more
information about warm standby applications for primary or replicate

databases.

Comparison of database relationships

In most of this book, databases are defined as “ primary” or “replicate.” In
discussing warm standby applications, however, databases are also defined as
“active’ or “standby.” Table 15-1 explains the difference.

Table 15-1: Active and standby vs. primary and destination databases

Active and standby databases

Primary and replicate databases

The active and standby databases must be
managed by the same Replication Server.

Primary and destination databases may be managed by the
same or different Replication Servers.

The active and standby databases must be
Adaptive Server (or SQL Server) databases.

Except where they participate in warm standby applications,
primary and desti nati on databases need not be Adaptive Server
(or SQL Server) databases.

The active database has one standby database.

Information isalwayscopied fromtheactiveto the
standby database.

A primary database can have one or more destination
databases.

Some databases contain both primary and copied data.

The use of replication definitionsis optional.
Subscriptions are not used.

Replication definitions and subscriptions are required for
replication from a primary to a destination database.

The connection to the standby database uses the
function-string class rs_default_function_class.

You cannot customize function stringsfor this
class.

The connection to areplicate database can use a function-
string classin which you can customize function strings. For
example, it may use aderived class that inherits function
strings from rs_default_function_class.

You can switch theroles of the active and standby
databases.

482

You cannot switch theroles of primary and replicate databases.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

Active and standby databases Primary and replicate databases

Client applications generally connect to theactive Client applications can connect to either primary or destination
database. (However, you can perform read-only database. Only primary data can be directly modified.
operations at the standby database.) Generally, client applications do not need to switch between
No mechanism is provided for switching client primary and destination databases.

applications when you switch the Replication

Server to the standby database.

The RepAgent for the active database submitsall In most applications, RepAgent does not submit maintenance

transactions on replicated tables, including user transactionsto the Replication Server to bereproduced in

maintenance user transactions, to the Replication destination databases.

(?Ztr;/ber’ which reproduces them in the standby The maintenance user does not generally execute transactions
ase.

in primary databases.

In awarm standby application for a destination
database, transactions in the active database are
normally executed by the maintenance user.

Warm standby requirements and restrictions

The following restrictions apply to all Replication Server warm standby
applications:

Administration Guide

You must use a Sybase Adaptive Server or SQL Server that supportswarm
standby applications. Refer to your release bulletin for more information.

One Replication Server manages both the active and standby databases.
Both the active and standby databases must be Adaptive Server or SQL
Server databases.

You cannot create a standby database for the RSSD or for the master
database.

Replication Server does not switch client applications to the standby
database. See “ Setting up clients to work with the active data server” on
page 516 for more information.

You should run Adaptive Server for the active and standby databases on
different machines. Putting the active and standby databases on the same
data server or hardware resources undermines the benefits of the warm
standby feature.

Although Adaptive Server allowstablesthat contain duplicaterows, tables
in the active and standby databases should have unique values for the
primary key columnsin each row.

483

Overview

Failover support is not asubstitute for warm standby. Whilewarm standby
keeps a copy of a database, Failover support accesses the same database
from adifferent machine. Failover support worksthe samefor connections
from Replication Server to warm standby databases.

For more detailed information about how Sybase Failover worksin
Adaptive Server, refer to Using Sybase Failover in a High Availability
System, which is part of the Adaptive Server Enterprise version 12.0
documentation set.

For more detailed information about how Failover support worksin
Replication Server, see “ Configuring the Replication System to Support
Sybase Failover” in Chapter 16, “Replication System Recovery,” of the
Replication Server Administration Guide.

The commands and proceduresfor abstract plans arereplicated, except for
the following:

¢ Theand set @plan_id clause of create plan is not replicated. For
example, this command is not replicated as shown.

create plan "select avg(price)
from titles" " (t_scan titles)
into dev _plans and set @plan id

Rather, it isreplicated as:

create plan "select avg(price)
from titles" " (t_scan titles)
into dev_plans

e Theabstract plan procedures that take a plan ID as an argument
(sp_drop_gplan, sp_copy_gplan, sp_set_gplan) are not replicated.

¢ Theset plan command is not replicated.

Function strings for maintaining standby databases

484

Replication Server uses the system-provided function-string class
rs_default_function_class for the standby DSI, which is the connection to the

standby database. Replication Server generates default function stringsfor this

class. You cannot customize the function strings in the class
rs_default_function_class.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

What information is replicated?

Replication Server supports different methods for enabling replication to the
standby database. The level and type of information that Replication Server
copies to the standby database depends on the method you choose.

Administration Guide

You must choose one of these two methods:

Use the sp_reptostandby system procedure to mark the entire database for
replication to the standby database. sp_reptostandby enables replication of
data manipulation language (DML) commands and a set of supported data
definition language (DDL) commands and system procedures.

DML commands, such asinsert, update, delete, and truncate table,
change the data in user tables.

e DDL commands and system procedures change the schema or
structure of the database.

sp_reptostandby allowsreplication of DDL commandsand proceduresthat
make changes to system tables stored in the database. You can use DDL
commands to create, alter, and drop database objects such as tables and
views. Supported DDL system procedures affect information about
database objects. They are executed at the standby database by the original
user.

If you use SQL Server version 11.0.x, or you choose hot use
sp_reptostandby, you can mark individual user tables for replication with
sp_setreptable. This procedure enables replication of DML operations for
the marked tables.

Optionally, you can aso tell Replication Server which user stored procedures
to replicate to the standby database:

If you use Adaptive Server or SQL Server version 11.0.x, you can copy the
execution of user stored procedures to the standby database by marking
them with the sp_setrepproc system procedure. Normally, only stored
procedures associated with function replication definitions are replicated
to standby databases.

Refer to “Using sp_setrepproc to copy user stored procedures’ on page
491 for more information.

485

What information is replicated?

Comparing replication methods

Table 15-2 compares sp_reptostandby and sp_setreptable, detailing how each
copiesinformation to the standby database. Many of these issues are discussed
in detail later in the chapter.

Table 15-2: Comparison of table replication methods

sp_reptostandby

sp_setreptable

Copies all user tables to the standby database.

Lets you choose which user tables are copied to the
standby database.

Allows replication of DML commands and supported
DDL commands and system procedures. Supported
DDL operations are listed in “ Supported DDL
commands and system procedures’ on page 488.

Allows replication of DML commands executed on
marked tables.

Note Supported DDL operations can bereplicated for an
isql sessions. Refer to “ Forcing replication of DDL
commands to the standby database” on page 493 for
more information.

Does not copy DML and DDL operations to replicate
databases.

If the warm standby application also copies datato a
replicate database, you must mark tablesto be copied to
the replicate database with sp_setreptable.

Copies DML operations to standby and replicate
databases.

Copies execution of the truncate table command to the
standby database. No subscription is needed.

Note You can enable or disable replication of truncate
table to standby databases with the alter logical
connection command. See “ Replicating truncate table
to standby databases’ on page 521 for more
information.

 If you use Adaptive Server databases, copies
execution of truncate table to standby databases. No
subscription is needed.

» If you use SQL Server databases, does not copy
execution of truncate table to standby or replicate
databases.

Replication Server uses table name and table owner
information to identify atable at the standby database.

486

If you include the owner_on keywords when you mark a
table for replication to the warm standby, Replication
Server uses table name and table owner information to
identify atable at the standby database.

If you include the owner_off keywords when you mark a
table for replication to the warm standby, Replication
Server uses the table name and “dbo” to identify atable
at the standby database.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

sp_reptostandby

sp_setreptable

By default, text, image, and rawobject columns are By default, text and image columns are always copied to
copied to the standby database only if changed. the standby database.

If you mark the database tables with sp_reptostandby ~ If you set the replication status with sp_setrepcol, text,
and sp_setreptable, text, image, and rawobject datamay image, and rawobject columns are treated as marked:
betreated in adifferent way. Refer to “Replicating text, always_replicate, replicate_if_changed, or

image, and rawobject data’ on page 492 for more do_not_replicate.

information.

The easiest method to use when the active and standby ~ Replication definitions are not required, but can be used
databases are identical. Replication definitionsare not to optimize performance.
required, but can be used to optimize performance.

Using sp_reptostandby to enable replication

Use sp_reptostandby to copy DML and supported DDL commands for all user
tables to the standby database.

Restrictions and requirements when using sp_reptostandby

Administration Guide

Consider the following issues when you set up your warm standby application
and enable replication with sp_reptostandby.

Both the active and standby databases must be managed by Adaptive
Servers and must support RepAgent. Both databases must have the same
disk allocations, segment names, and roles. Refer to the Adaptive Server
System Administration Guide for details.

The active database name must exist in the standby server. Otherwise,
replication of commands or procedures containing the name of that
database will fail.

Replication Server does not support replication of DDL commands
containing local variables. You must explicitly define site-specific
information for these commands.

Logininformation is not replicated to the standby database. Refer to
“Making the server user’s IDs match” on page 503 for information about
adding login information to the destination Replication Server.

Some commands not copied to the standby database include:
* selectinto

* update statistics

487

What information is replicated?

e Database or configuration options such as sp_dboption and
sp_configure

“Supported DDL commands and system procedures’ and list the DDL
commands—Transact-SQL commands and Adaptive Server system
procedures—that Replication Server reproduces at the standby database when
you enable replication with sp_reptostandby. An asterisk marks those
commands and stored procedures whose replication is supported for Adaptive
Server 12.5 and later.

Supported DDL commands and system procedures

488

alter table
create default
create index
create plan*
create procedure
create rule
create schema*
create table
create trigger
create view
drop default
drop index

drop procedure
drop rule

drop table

drop trigger
drop view

grant
installjava*
remove java*
revoke
sp_addalias
sp_addgroup
sp_addmessage
sp_add_gpgroup*
sp_adduser
sp_addtype
sp_bindefault
sp_bindmsg
sp_bindrule
sp_changegroup

Replication Server

CHAPTER 15 Managing Warm Standby Applications

Administration Guide

sp_chgattribute
sp_commonkey
sp_config_rep_agentsp_dropalias
sp_drop_all_gplans*
sp_dropgroup
sp_dropkey
sp_dropmessage
sp_drop_gpgroup*
sp_droptype
sp_dropuser
Sp_export_gpgroup*
sp_foreignkey
Sp_import_gpgroup*
Sp_primarykeysp_procxmode
sp_recompile
sp_rename
Sp_rename_qpgroup*
sp_setrepcol
sp_setreplicate
sp_setrepmode
Sp_setrepproc
sp_setreptable
sp_unbindefault
sp_unbindmsg
sp_unbindrule

To enable replication of DML and DDL commands, execute sp_reptostandby
at the Adaptive Server that manages the active database. The syntax is:

sp_reptostandby dbname[, 'L1' | 'all' | 'none']

where dbname is the name of the active database and the keywords L1, all, and
none set the level of replication support.

L1 represents the level of replication supported by Adaptive Server version
12.5.

Use the all keyword to make sure that schema replication support is always at
the highest level available. For example, to set the schemareplication support
level tothat of thelatest Adaptive Server version, log into Adaptive Server and
execute this command at the isql prompt:

sp_reptostandby dbname, 'all'

489

What information is replicated?

Disabling replication

Then, if the database is upgraded to alater Adaptive Server version with a
higher level of replication support, all new features of that version are enabled
automatically. Refer to “sp_reptostandby” in Chapter 5, “ Adaptive Server
Commands and System Procedures,” in the Replication Server Reference
Manual for complete syntax and user information.

Toturn off dataand schemareplication, loginto Adaptive Server and enter this
command at the isql prompt:

sp_reptostandby dbname, 'none’

When replication is turned off, Adaptive Server locks all user tablesin
exclusive mode and saves information about each of them. This process may
take some time if there are alarge number of user tablesin the database.

Use this procedure only if you are disabling the warm standby application.

Note If you wish to turn off replication for the current isql session only, usethe
set replication command. See “ Changing replication for the current isgl
session” on page 493 for more information.

Using sp_setreptable to enable replication

490

Use sp_setreptable to mark individual tables for replication to replicate or
replicate and standby databases. Replication Server copies DML operationson
those tables to the standby and replicate databases.

Use sp_setreptable to mark tables for replication to the standby database if:
e You use SQL Server databases, or
¢ You choose not to use sp_reptostandby.

Using sp_setreptable maintains data, but not schema, consistency between the
active and standby databases. sp_setreptable normally does not copy supported
DDL commands and procedures to the standby database. You can, however,
use the set replication command to force replication of DDL commandsfor the
current isgl session. Refer to “ Changing replication for the current isqgl
session” on page 493 for more information about set replication.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

Using sp_setrepproc to copy user stored procedures

To copy the execution of auser stored procedure to the standby database, mark
the stored procedure for replication with sp_setrepproc. Procedures marked
with sp_setrepproc are also reproduced at replicate databases if subscriptions
have been created for them.

There are two possible scenarios for stored procedure execution in warm
standby applications:

e If you have marked the stored procedure for replication with
sp_setrepproc, Replication Server copies execution of the procedureto the
standby database. It does not copy the effects of the stored procedureto the
standby database.

« If you have not marked the stored procedure for replication, Replication
copies DML changes effected by the procedure to the standby database, if
the affected tables have been marked for replication.

Refer to Chapter 10, “Managing Replicated Functions’ for more information
about the sp_setrepproc system procedure.

Replicating tables with the same name but different owners

Administration Guide

Adaptive Server and Replication Server allow you to replicate tables with the
same name but different owners.

When you mark a database for replication with sp_reptostandby, updates are
copied automatically to the table of the same name and owner in the standby
database.

When you mark atable for replication using sp_setreptable, you can choose
whether the table owner nameis used to select the correct table in the standby
database.

» If you set owner_on, Replication Server sends the table name and table
owner name to the standby database.

* If you set owner_off, Replication Server sendsthe table nameand “dbo” as
the owner name to the standby database.

Note If you are copying information to areplicate database and have used
sp_setreptable to set owner_off, Replication Server sends the table nameto the
replicate database. It does not send owner information.

491

What information is replicated?

Refer to “Enabling replication with owner_on status’ on page 277 for syntax
and other information about using sp_setreptable to set owner status.

Note If you mark atable with a non-unique name for replication and then
create areplication definition for it, you must include owner information in the
replication definition. Otherwise, Replication Server will be unableto find the
correct table in the replicate or standby database.

Replicating text, image, and rawobject data

If a database is marked with sp_reptostandby, the replication statusis
automatically replicate_if_changed, and Adaptive Server logs only text, image,
and rawobject columns that have been changed. This ensures that the standby
database stays in sync with the active database. You cannot change the
replication status of such atable using sp_setrepcol.

If atableis marked for replication with sp_setreptable, the default replication
status is always_replicate, and Adaptive Server logs all text, image, and
rawobject column data. You can change the replication status of text, image, and
rawobject columns in tables marked with sp_setreptable. Use sp_setrepcol to
change the replication status to replicate_if_changed or do_not_replicate. A
column or combination of columns must uniquely identify each row.

If you usereplication definitions, the primary key must be aset of columnsthat
uniquely identify each row in the table. You have to make sure that replication
status is the same at the Adaptive Server and the Replication Server. If the
replication status differs, you must resolve the inconsistencies. Refer to
“Resolving inconsistenciesin replication status’ on page 289 for more
information.

When warm standby involves a replicate database

You can copy information from an active database to a standby database and
also copy information from the active database to a replicate database.
Replication Server must copy atable’'stext, image, and rawobject columns to
the standby and replicate databases with the same replication status.

Do not change the replication status for the table if you want to copy al text,
image, and rawobject columns to the standby and replicate databases. By
default, al text, image, and rawobject columns are copied to standby and
replicate databases.

492 Replication Server

CHAPTER 15 Managing Warm Standby Applications

If you want to copy only text, image, and rawobject columnsthat have changed,
use sp_setrepcol to set the replication status to replicate_if changed.

Changing replication for the current isql session

You can use set replication to control replication of DML and/or DDL
commands and procedures for an isgl session.

Execute set replication at the Adaptive Server that manages the active database.
The syntax is:

set replication ['on' | 'force_ddI' | 'default' | 'off']
The default setting is“on.” Default behavior depends on whether or not the

database has been marked for replication with sp_reptostandby. Table 15-3
describes the default behavior of set replication.

Table 15-3: Default behavior of set replication
If the database has been marked for If the database has not been marked for
replication with sp_reptostandby replication with sp_reptostandby

Replication Server copies DML and supported DDL Replication Server copies DML commands to standby and
commands to the standby database for all user tables. replicate databases for tables marked with sp_setreptable.

Some examples of set replication follow. Refer to “set replication” in Chapter
5, “Adaptive Server Commands and System Procedures’ in the Replication
Server Reference Manual for complete syntax and usage information.

Forcing replication of DDL commands to the standby database

To force replication of all supported DDL commands and system procedures
for an isql session, enter:

set replication 'force ddl'

This command enables replication of DDL commands and system procedures
for tables marked with sp_setreptable.

To turn off force_ddl and return set replication to default status, enter:
set replication 'default'

Turning off all replication to the standby database

To turn off al replication to the standby database for an isql session, enter:

set replication 'off'

Administration Guide 493

Setting up warm standby databases

Setting up warm standby databases

Setting up databases for awarm standby application involves three high-level
tasks. Each of these tasks may include additional tasks.

1 Createasinglelogical connection that will be used by both the active and
standby databases.

2 Use Sybase Central or rs_init to add the active database to the replication
system. You do not need to add the active database if you have designated
as the active database a database that was previously added to the
replication system.

3 Usesp_reptostandby or sp_setreptable to enable replication for tablesin
the active database.

4 Use Sybase Central or rs_init to add the standby database to the replication
system, then initialize the standby database.

Before you begin
Before setting up the databases, note that:

¢ The Replication Server that manages the active and standby databases
must beinstalled and running. A single Replication Server manages both
the active and the standby database.

e The Adaptive Serversthat contain the active and standby databases must
be ingtalled and running. Ideally, these databases should be managed by
data servers running on different machines.

« Before you can add a database to the replication system as an active or
standby database, it must already exist in the Adaptive Server.

See “Warm standby requirements and restrictions’ on page 483 for additional
information.

Client application issues

Depending on your client applications and your method of initializing the
standby database, you may be suspending transaction processing in the active
database until you have initialized the standby database.

494 Replication Server

CHAPTER 15 Managing Warm Standby Applications

If you do not suspend transaction processing, ensure that Replication Server
has sufficient stable queue space to hold the transactionsthat execute whileyou
are loading data into the standby database.

Before you set up thewarm standby databases, you should have decided on and
implemented a mechanism for switching client applications to the new active
database. See “ Setting up clients to work with the active data server” on page
516 for more information.

Task one: Creating the logical connection

RSM

This section explains how to create the logical connection for the warm
standby application. See “ Database connections in awarm standby
application” on page 481 for more information about logical connections.

This section also explains how to reconfigure RepAgent for the active
database, which you must do if the active database was already part of the
replication system.

For instructions on creating alogical connection in Sybase Central, see
“Creating alogical connection” in Replication Server’s plug-in help.

Naming the logical connection

Administration Guide

When you create the logical connection, use the combination of logical data
server name and logical database name, in the form data_server.database.

There are two methods for naming the logical connection:

« If the active database has not yet been added to the replication system —
use adifferent namefor thelogical connection than for the active database.
Using unique names for the logical and physical connections makes
switching the active database more straightforward.

« If the active database has previously been added to the replication system
—use the data_server and database names of the active database for the
logical connection name. The logical connection inherits any existing
replication definitions and subscriptions that reference this physical
database.

When you create a replication definition or subscription for awarm standby
application, specify the logical connection instead of a physical connection.

Specifying the logical connection allows Replication Server to reference the
currently active database.

495

Setting up warm standby databases

See “Warm standby applications using replication” on page 524 for more
information. Also see “Using replication definitions and subscriptions’ on
page 531.

Procedure for creating the logical connection

Follow these steps to create the logical connection:

1 Using alogin name with sa permission, log in to the Replication Server
that will manage the warm standby databases.

2 Execute the create logical connection command:
create logical connection to data server.database

The data server name can be any valid Adaptive Server name, and the
database name can be any valid database name.

Reconfiguring and restarting RepAgent

If you designate as the active database a database that was previously added to
the replication system, the RepAgent thread for the active database shuts down
when you create the logical connection.

1 Reconfigure RepAgent with sp_config_rep_agent, setting the
send_warm_standby_xacts configuration parameter.

2 Restart RepAgent.

For information about how to configure and start RepAgent, refer to “ Setting
up RepAgent” on page 120. Refer to “sp_config_rep_agent” on page 5-10in
the Replication Server Reference Manual for more information about the
sp_config_rep_agent System procedure.

If you are using an LTM as the replication agent, start the LTM using the -w
command lineflag. Refer to “Itm” in Chapter 7, “Programs,” inthe Replication
Server Reference Manual for information about the Itm program.

Task two: Adding the active database

496

To add a database to the replication system as the active database for awarm
standby application, rs_init, as described in the Replication Server installation
and configuration guides for your platform. Perform the steps described for
adding a database to the replication system.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

RSM

For instructions on adding an active database in Sybase Central, see “Adding
the active database” in Replication Server’s plug-in help.

Note Remember, you do not need to add the active database if you have
designated adatabase that isalready part of the replication system asthe active
database.

Task three: Enabling replication for objects in the active database

Administration Guide

You can enable replication for tablesin the active database in either of two
ways:

» Usesp_reptostandby to mark the database for replication, enabling
replication of data and supported schema changes.

» Usesp_setreptable to mark individual tables for replication of data
changes.

Refer to “What information is replicated?’ on page 485 for more information
about these commands.

1 Logintothe Adaptive Server asthe System Administrator or asthe
Database Owner, and:

use active database
2 Mark database tables for replication, using one of these methods:

e Mark all user tables by executing the sp_reptostandby system
procedure:

sp_reptostandby dbname, ['L1' | 'all']

where dbname is the name of the active database, L1 setsthe
replication level to that of Adaptive Server version 11.5, and all sets
the replication level to the current version of Adaptive Server. This
method replicates both DML and DDL commands and procedures.

e Markindividua user tables by executing the sp_setreptable system
procedure for each table that you want to replicate into the standby
database:

sp_setreptable table name, 'true'

where table_name is the name of the table. This method replicates
DML commands.

497

Setting up warm standby databases

3

If you are using the replicated functions feature described in Chapter 10,
“Managing Replicated Functions’ execute the following system
procedure for every stored procedure whose executions you want to
replicate into the standby database:

sp_setrepproc proc name, 'function'

If you are using replicated stored procedures associated with table
replication definitions, as described in Appendix A, “Asynchronous
Procedures,” execute the following system procedure for every such
stored procedure whose executions you want to replicate into the standby
database:

sp_setrepproc proc name, 'table'

Enabling replication for objects added later

Later on, you may add new tables and user stored procedures that you want to
replicate to the standby database.

If you marked the database for replication with sp_reptostandby, new
tables are automatically marked for replication.

If you marked database tables for replication to the standby database with
sp_setreplicate, you must mark each new table that you want to replicate
with sp_setreplicate.

You must mark each new user stored procedure that you want to replicate
with sp_setrepproc.

Task four: Adding the standby database

Use rs_init to add the standby database and its RepAgent to the replication
system, then you initialize it with data from the active database.

RSM

498

For instructions on adding the standby databasein Sybase Central, see” Adding
the standby database” in Replication Server’s plug-in help.

This section explains how to add the standby database to thereplication system
and prepare it for operation.

This section also describes enabling replication for objects in the standby
database and granting permissions to the maintenance user in the standby
database. Whether or not you need to perform these steps depends on your
method for initializing the standby database.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

Before you add the standby database:
1 Createthe standby database, if it does not already exist.
2 Determine how to initialize the standby database.

3 Add the standby database maintenance user—if you are using dump and
load to initialize the standby database.

4 Online the new database using the online database clause before
replicating.

Creating the standby database

If it does not aready exist, you must create the standby database in the
appropriate Adaptive Server, according to your needs.

Refer to the Adaptive Server System Administration Guide for details on
creating databases.

Determining how to initialize the standby database

You initialize the standby database with data from the active database. To do
this, use these Adaptive Server commands and utilities:

e dump and load, or
. bcp, or
e quiesce database ... to manifest_file and mount.

Replication Server writes an “enable replication” marker into the active
database transaction log when you add the standby database using Sybase
Central or rs_init. Adaptive Server writes adump marker into the active
database transaction log when you perform a dump operation.

If you do not suspend transaction processing during initialization:

¢ Choosethe“dump marker” optionin Sybase Central or rs_init, and use the
dump and load commands.

If you suspend transaction processing during initialization:

¢ Do not choose the “dump marker” option in Sybase Central or rs_init, and
use the dump and load commands, or

e Usehbcp, or

e Usequiesce database ... to manifest_file and mount.

Administration Guide 499

Setting up warm standby databases

Table 15-4 summarizes each of the initialization methods and the role of these

markers.

Table 15-4: Issues in initializing the standby database

Use dump and
load with “dump

Use dump and
load without

Issue marker” “dump marker” | Use bcp Use mount
Workingwithclient | Useif youcannot | Useif you can suspend transaction Useif you can suspend
applications. suspendtransaction | processing for client applications. transaction processing for
processing for client applications.
client applications.
When does Replication Server | Replication Server startsreplicatinginto Replication Server starts
Replication Server | startsreplicating the standby database from the enable replicating into the
begin replicating into the standby replication marker. standby database from the
into the standby database from the enable replication marker.
database? first dump marker
after the enable
replication marker.
Creating Add the login name for the standby Whenyou addthe Add the login name for
maintenance user database maintenance user in both the standby database, the standby database
login names and active Adaptive Server and the standby Sybase Central or maintenance user in both
making sure al Adaptive Server, and ensure that the rs_init adds the the active and standby
user IDs match. server user’s |Ds match. maintenance user Adaptive Servers. Ensure
(You create login names in the active login name and that the server user's IDs
Adaptive Server because using dump and | USer inthe standby match. (You create login
load to initialize the standby database Adaptive Server namesin the active
with data from the active database and the standby Adaptive Server becauise
overrides any previous contents of the database. using mount to initialize
standby database with the contents of the the standby database with
active database.) data from the active
database overrides any
previous contents of the
standby database with the
contents of the active
database.)
Initializing standby | Use dump and load to transfer datafrom | Use bcp to copy Use quiesce database ...
database. the active database to the standby each replicated to manifest_fileand mount
database. table from the database to transfer data
You can use database dumps and/or activedatabaseto from the active database
transaction dumps. the standby to the standby database.
database.

Active database
connection state.

500

The connection to
the active database
does not change.

Replication Server suspends the
connection to the active database.

Replication Server
suspends the connection
to the active database.

Replication Server

CHAPTER 1

5 Managing Warm Standby Applications

Use dump and
load with “dump

Use dump and
load without

Issue marker” “dump marker” | Use bcp Use mount

Resuming Resumeconnection | Resume connections to the active and Resume connections to

connections. to the standby standby databases; resume transaction the active and standby
database. processing in the active database. database; resume

transaction processing in
the active database.

If you do not suspend
transaction processing

Administration Guide

If you do not suspend transaction processing for the active database while
initializing the standby database, choose the “dump marker” option when you
add the standby database. Then initiaize the standby database by using the
dump and load commands.

Replication Server starts replicating into the standby database from the first
dump marker after the enable replication marker in the transaction log of the
active database.

In Figure 15-2, transaction T1, executed after you added the standby database,
appears after the enable replication marker inthelog. T1isincluded in dumps,
so it is present in the standby database after you have loaded the dumps.
Replication Server does not need to replicate it into the standby database.

Figure 15-2: Using dump and load with dump marker

Lo Included in dumps,
grogws \and loaded in the
Enable marker /(standby database

T1
Dump marker

Applied to the

» standby database

Active database
transaction log

Transactions can be executed in the active database between the time the
enablereplication marker iswritten and the time the datain the active database
is dumped.

You canload thelast full database dump and any subseguent transaction dumps
into the standby database until both markers have been received and the
standby database is ready for operation. Then, optionally, you can use afina
transaction dump of the active database to bring the standby database up to
date. Any transactions not included in dumps will be replicated.

501

Setting up warm standby databases

If you suspend
transaction processing

502

Replication Server does not replicate transactions from the active to the
standby database until it has received both the enable replication marker and
the first subsequent dump marker. After receiving both markers, Replication
Server starts executing transactions in the standby database.

See Table 15-4 for more information about this method.

If you suspend transaction processing for the active database while initializing
the standby database, do not choose the “ dump marker” option when you add
the standby database. You caninitialize the standby database by using the dump
and load commands, by using becp, or by using mount.

Replication Server starts replicating into the standby database from the enable
replication marker in thetransaction log of the active database. No transactions
occur after the enable replication marker, because client applications are
suspended.

Figure 15-3: Using dump and load without dump marker, or using bcp

Included in dumps,
and loaded in the

Log standby database

grows

Enable marker

Applied to the
Rl standby database

Active database
transaction log

As shown in Figure 15-3, no transactions are executed in the active database
between the time the enable replication marker iswritten and the time the data
inthe active database i s dumped using the dump command, or copied using bcp
or mount.

You can load the last full database dump or the last set of replicated tables
copied with bep into the standby database until the standby database receives
the enabl e replication marker.

After receiving this marker, Replication Server starts executing transactionsin
the standby database.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

Adding the standby database maintenance user

Making the server
user’s IDs match

Adding the
maintenance user

Administration Guide

If you plan to initialize the standby database using the dump and load
commands, with or without the “dump marker” option, you must create the
maintenance user login name for the standby database in both the standby and
the active data servers. Do this before you add the standby database.

Both Sybase Central and rs_init automatically add the active database
maintenance user in the active data server when you add the active database.

Within each data server, the server user’s ID (suid) for each login name must
be the same in the syslogins table in the master database and the sysusers table
in each user database. Thismust betruefor the active and standby databasesin
awarm standby application. The server user’s 1D and rol e settings must also be
the same in the syslogins and sysloginroles tables in the master database.

Use one of these three methods to make the server user’s | Ds match:

e Addall login names, including maintenance user names, to both Adaptive
Serversin the same order. Adaptive Server assigns server user's |IDs
sequentialy, so the server user’s IDsfor al login names will match.

» Afterloading the dump into the standby, reconcile the sysusers tablein the
standby database with the syslogins table in the master database of the
standby Adaptive Server.

* Maintain amaster Adaptive Server with all of your login names and copy
the syslogins table from the master database for the master Adaptive
Server to all newly created Adaptive Servers.

To add the maintenance user login name for the standby database to both the
standby and the active data servers:

1 Inthe standby data server, execute the sp_addlogin system procedure to
create the maintenance user login name.

Refer to the Adaptive Server System Administration Guide for more
information about using sp_addlogin.

2 Inthe active data server, execute sp_addlogin to create the same
maintenance user login name that you created in the standby data server.

When you set up the standby database using the dump and load commands,
the sysusers tableisloaded into the standby database along with the other
data from the active database.

503

Setting up warm standby databases

Adding the standby database to the replication system
To add the standby database to the replication system:

504

1

Suspend transaction processing in the active database, if appropriate for
your client applications and your method of initializing the standby
database.

You must use dump and load with the*“ dump marker” method if you do not
suspend transaction processing.

Use Sybase Central or rs_init to add the standby databaseto thereplication
system. Perform the steps described for adding a database to the
replication system.

To monitor the status of the logical connection at any time, enter:

admin logical status, logical ds, logical db

The Operation in Progress and State of Operation in Progress output
columns indicate the standby creation status.

If you areinitializing the standby database using dump and load, use the
dump command to dump the contents of the active database, and load the
standby database. For example:

dump database active database to dump device
load database standby database from dump device

If you have aready |oaded a previous database dump and subsequent
transaction dumps, you can just dump the transaction log and load it into
the standby database. For example:

dump transaction active database to dump device
load transaction standby database from dump device

After completing load operations, bring the standby database online:
online database standby database

Refer to the Adaptive Server Reference Manual for help with using the
dump and load commands and the online database command.

Initialize the standby database. Use bep or quiesce ... to manifest_file and
mount.

e Toinitialize the standby database using bcp, copy each of the
replicated tables in the active database to the standby database.

You must copy the rs_lastcommit table, which was created when you
added the active database to the replication system.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

Using a blocking

command for standby

creation

8

Refer to the Adaptive Server utility programs manual for help with
using the bcp program.

« Toinitializethe standby database using quiesce ... to manifest_fileand
mount, quiesce the database and create the manifest file. Make a copy
of both the database and log devices. Mount the devices on the
standby database.

If you initialized the standby database by using dump and load without the
“dump marker” method, or by using bcp, or by using quiesce database ...
to manifest_file and mount, Replication Server suspended the connection
to the active database. Resume the connection by executing the following
command in the Replication Server:

resume connection to active ds.active db

Regardless of your method for initializing the standby database, you must
resume the connection to the standby database by executing the following
command:

resume connection to standby ds.standby db

10 Resume transaction processing in the active database, if it was suspended.

In Replication Server, the wait for create standby command is a blocking
command. It tells Replication Server not to accept commands until the standby
database is ready for operation. You can use this command in a script that
creates a standby database. The syntax is:

wait for create standby for logical ds.logical db

Enabling replication for objects in the standby database

To be ready to switch to the standby database, replication must be enabled for
the tables and stored procedures in the standby database that you want to
replicate into the new standby database after the switch.

Administration Guide

If you initialized the standby database using the dump and load or mount
commands, the tables and stored procedures in the standby database will
have the same replication settings as the active database.

If you initialized the standby database using bcp, enable replication for
these objects by using sp_setreptable oOr sp_reptostandby, and
sp_setrepproc. To do this, adapt the procedure under “ Task three: Enabling
replication for objects in the active database” on page 497 to enable
replication for objects in the standby database.

505

Switching the active and standby databases

Enabling replication Later on, you may add new tables and user stored procedures that you want to
for objects added later renjjcate to the new standby database.

¢ If you marked the standby database for replication with sp_reptostandby,
any new tables are automatically marked for replication.

¢ If youmarked individual databasetablesfor replication to the new standby
database with sp_setreplicate, you must mark each new tablethat you want
to replicate with sp_setreplicate.

¢ You must mark each new user stored procedure that you want to replicate
with sp_setrepproc.

Granting permissions to the maintenance user

After adding the standby database, you must grant the necessary permissions
to the maintenance user.

To grant permissions:

1 Logintothe Adaptive Server asthe System Administrator or asthe
Database Owner, and enter:

use standby database

2 Grant replication_roleto the maintenance user. replication_role ensures that
the maintenance user can execute truncate table at the standby database.

sp_role “grant”, replication _role, maintenance user
3 Execute thiscommand for each table:

grant all on table name to maintenance user

Switching the active and standby databases

This section contains information about switching to the standby database
when the active database fails or when you want to perform maintenance on the
active database.

506 Replication Server

CHAPTER 15 Managing Warm Standby Applications

Determining if a switch is necessary

Before switching

Active

Standby
Database StaDnSdIby ’@ Database

Administration Guide

Determining when it is necessary to switch from the active to the standby
database depends on the requirements of your applications.

In general, you should not switch when the active data server experiences a
transient failure. A transient failureisafailure from which the Adaptive Server
recovers upon restarting with no need for additional recovery steps. You
probably should switch if the active database will be unavailable for along
period of time.

Determining when to switch depends on issues such as how much recovery the
active database reguires, to what degree the active and standby databasesarein
sync, and how much downtime your users or applications can tolerate.

You may also want to switch the roles of the active and standby databases to
perform planned maintenance on the active database or its data server.

active and standby databases

Figure 15-4 illustrates awarm standby application for a database that does not
participate in the replication system other than through the activities of the
warm standby application itself. Figure 15-4 represents the warm standby
application in normal operation, before you switch the active and standby
databases.

Figure 15-4: Warm standby application example—before switching

Clients

Replication Server

®(Inbound Queue)

507

Switching the active and standby databases

Figure 15-4 addsinternal detail to Figure 15-1, to show that:

Replication Server writes transactions received from the active database
into an inbound message queue.

See “Distributed concurrency control” on page 48 for more information
about inbound and outbound queues.

Thisinbound queue is read by the DSI thread for the standby database,
which executes the transactions in the standby database.

M essages received from the active database cannot be truncated from the
inbound queue until the standby DSI thread has read them and applied
them to the standby database.

In this example, transactions are simply replicated from the active database
into the standby database. The logical database itself does not:

Contain primary datathat is replicated to replicate databases or remote
Replication Servers, or

Receive replicated transactions from another Replication Server

See “Warm standby applications using replication” on page 524 for
information about warm standby applications for a primary or replicate
database.

Internal switching steps
When you switch active and standby databases, hereiswhat Replication Server

508

does:

1 Issueslog suspend against the active and standby RepAgent connections.

2 Readsal messages |eft in the inbound queue and applies them to the
standby database and, for subscription data or replicated stored
procedures, to outbound queues.
All committed transactionsin theinbound queue must be processed before
the switch can complete.
Suspends the standby DSI.

4 Enablesthe secondary truncation point in the new active database.

Places amarker in the transaction log of the new active database.
Replication Server uses this marker to determine which transactions to
apply to the new standby database and to any replicate databases.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

6 Updates datain the RSSD pertaining to the warm standby databases.

7 Resumes the connection for the new active database, and resumes |og
transfer for the new active database so that new messages can be received.

After switching active and standby databases

After you have switched the roles of the active and standby databases, the
replication system will have changed, as shown in Figure 15-5:

Figure 15-5: Warm standby application example—after switching

Clients

Replication Server

Standby Active
Database @‘ StaDnSdIby Database

(Inbound Queue)

* Theprevious standby database is the new active database. Client
applications will have switched to the new active database.

» The previous active database, in this example, becomes the new standby
database. Messages for the previous active database are queued for
application to the new active database.

Note RepAgent for the previous active database has shut down. RepAgent for
the new active database has started.

Making the switch
To switch from the active to the standby database:

Administration Guide 509

Switching the active and standby databases

RSM

« Disconnect client applications from the active database if they are still
using it

¢ InReplication Server, switch the active and standby databases

¢ Restart client applications with the new active database

e« Start RepAgent for the new active database

« Determine whether to drop the old active database or use it as the new
standby database

The following sections contain the procedures for these tasks.

For instructions about switching to the active database in Sybase Central, see
“Switching the active and standby databases’ in Replication Server’s plug-in
help.

Disconnect client applications from the active database

Before you switch to the standby database, you must stop clients from
executing transactions in the active database. If the database failed, of course,
clients cannot execute transactions. However, you may need to take steps to
prevent them from updating that database after it is back online.

See " Setting up clients to work with the active data server” on page 516 for
more information about client application issues.

Procedure for switching the active and standby databases

510

Before switching, you must implement a method for switching clients, as
described in “ Setting up clients to work with the active data server” on page
516.

Follow these steps to switch the active and standby databases for alogical
connection:

1 AttheAdaptive Server of the active database, ensure that the RepAgent is
shut down. Otherwise, use sp_stop_rep_agent to shut down the RepAgent.

2 Atthe Replication Server, enter:

switch active for logical ds.logical db
to data server.database

data_server.database is the new active database.

See“Internal switching steps’ on page 508 for information on what
Replication Server does when you switch.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

3 To monitor the progress of a switch, you can use the admin logical_status
command:

admin logical status, logical ds, logical db

The Operation in Progress and State of Operation in Progress output
columns indicate the switch status.

4 When the active database switch is complete, you must restart RepAgent
for the new active database:

sp_start rep agent dbname

Note If Replication Server stopsin the middle of switching, the switch
resumes after you restart Replication Server.

Using a blocking command for switch active

Monitoring the switch

Administration Guide

In Replication Server, the wait for switch command is a blocking command. It
tells Replication Server to wait until the standby database is ready for
operation. You can use this command in a script that switches the active
database. The syntax is:

wait for switch for logical ds.logical db

You can use admin logical_status to check for replication system problems that
prevent the switch from proceeding. Such problems may include afull
transaction log for the standby database or a suspended standby DSI. If you
cannot resolve the problems, you can abort the switch using the abort switch
command.

The Operation in Progress and State of Operation in Progress output columns
indicate the switch status.

For example, suppose the admin logical_status command persistently returns
one of the following messages in its State of Operation in Progress output
column:

Standby has some transactions that have not been applied
or

Inbound Queue has not been completely read by
Distributor

511

Switching the active and standby databases

Aborting a switch

These messages may indicate a problem that you cannot resolve, in which case
you may choose to abort the switch. You can use admin who commands to
obtain more information about the state of the switching operation.

See “ Commands for monitoring warm standby applications’ on page 515 for
more information.

Unless Replication Server has proceeded too far in switching the active and
standby databases, you can abort the process by using the abort switch
command:

abort switch for logical ds.logical db

If the abort switch command cancel s the switch active command successfully,
you may have to restart the RepAgent for the active database.

You cannot cancel the switch active command after it reaches a certain point. If
thisisthe case, you must wait for the switch active command to compl ete, then
useit again to return to the original active database.

Restart client applications

When the admin logical_status command indicates that there is no operationin
progress, or when the wait for switch command returns an isql prompt, you can
restart client applications in the new active database.

Client applications must wait until Replication Server’s switch to the new
active database is compl ete before they begin executing transactionsin the new
activedatabase. You should provide an orderly method for moving clientsfrom
the old active database to the new active database. See “ Setting up clientsto
work with the active data server” on page 516 for more information.

Resolving paper-trail transactions

512

If the old active database failed, determine if any transactions were not
transmitted to the new active database. Such transactionsare called paper-tr ail
transactionsif thereis an external record of their execution.

When you switch from an active to a standby database, all committed
transactionsin theinbound queue are applied to the new active database before
the switch is complete. However, it is possible that some transactions that
committed at the active database before the failure were not received by
Replication Server and, therefore, were not applied to the standby database.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

When you switch the active and standby databases, you can re-execute the
paper-trail transactionsin the new active database. If there are dependencies,
you may need to re-execute the paper-trail transactions before you allow new
transactionsto execute. Be sureto execute the paper-trail transactionsusing the
origina client’s login name, not the maintenance user login name.

If you bring the old active database online as the new standby database, you
must first reverse the paper-trail transactions so they will not be duplicated in
the standby database.

Manage the old active database

After you have switched to the new active database, you must decide what to
do with the old active database. You can:

» Bring the database online as the new standby database and resume the
connection so that Replication Server can apply new transactions, or

» Drop the database connection using the drop connection command, and
add it again later as the new standby database. If you drop the database,
any queued messages for the database are deleted. Refer to “drop
connection” in Chapter 3, “Replication Server Commands,” in the
Replication Server Reference Manual.

Bringing the old active database online as the new standby

Administration Guide

If the old active databaseis undamaged, you can bring it back online asthe new
standby database by entering:

resume connection to data server.database

where data_server.database is the physical database name of the old active
database.

You may need to resolve paper-trail transactions in the database in order to
avoid duplicate transactions. Depending on your applications, you may need to
do thisbefore you bring the old active database back online as the new standby
database.

Because paper-trail transactions must be re-executed in the new active
database, you must prepare the new standby database so that it can receive the
transactions again when they are delivered through the replication system.

To resolve the conflicts, you can:
» Undo or reverse the duplicate transactionsin the new standby database, or

« Ignorethe duplicate transactions and deal with them later.

513

Monitoring a warm standby application

Monitoring a warm standby application

This section describes methods you can use to monitor a warm standby

application.

Replication Server log file

You can read the Replication Server log file for messages pertaining to warm

standby operations. This section discusses|og messagesyou will see when you
add the standby database.

Standby connection created

These are examples of the messages that Replication Server writes while
creating the physical connection for a standby database:

I. 95/11/01 17:47:50. Create starting : SYDNEY DS.pubs2
I. 95/11/01 17:47:58. Placing marker in TOKYO DS.pubs2 log
I. 95/11/01 17:47:59. Create completed : SYDNEY DS.pubs2

514

In these examples, SYDNEY _DS isthe standby data server and TOKYO_DS
isthe active data server.

When you create the physical connection for the standby database, Replication
Server writes an “enable replication” marker in the active database transaction
log. The standby DSI ignores all transactions until it has received this marker.
If, however, you chose the “ dump marker” option, the standby DSI continues
to ignore messages until it encounters the next dump marker in the log.

When the appropriate marker arrives at the standby database from the active
database RepAgent, the standby DSI writes a message in the Replication
Server log file and then begins executing subsequent transactions in the
standby database.

In the example messages above, Replication Server has created the connection
for the standby database, SY DNEY_DS.pubs2, and suspended its DS thread.
At this point, the Database Administrator dumps the contents of the active
database, TOKY O_DS.pubs2, and loads it into the standby database.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

Standby connection resumed after initialization

After the Database Administrator has loaded the dump into the standby
database and resumed the connection to the standby database, the standby DS
begins processing messages from the active database. Replication Server
writesin itslog messages similar to this:

I. 95/11/01 18:50:34. The DSI thread for database 'SYDNEY DS.pubs2' is started.

. 95/11/01 18:50:41. Setting LTM truncation to 'ignore' for SYDNEY DS.pubs2 log

I. 95/11/01 18:50:43. DSI for SYDNEY DS.pubs2 received and processed Enable
Replication Marker. Waiting for Dump Marker

I. 95/11/01 18:50:43. DSI for SYDNEY DS.pubs2 received and processed Dump
Marker. DSI is now applying commands to the Standby

H

When you see the final message in the log file, the warm standby database
creation process has completed.

Commands for monitoring warm standby applications

Usethe admin commands to monitor the status of awarm standby application.
Refer to Chapter 3, “ Replication Server Commands,” in the Replication Server
Reference Manual for more information about these commands.

admin logical_status
The admin logical_status command tells you:

* How the addition of a standby database or the switching between active
and standby databasesis progressing.

¢ Whether the active or standby database connection is suspended.

¢ Whether the standby DSl isignoring messages. The standby DSI ignores
messages while it waits for a marker to arrive in the transaction stream
from the active database.

admin who, dsi

The admin who, dsi command provides another method to check the status of
the standby DSI. The IgnoringStatus output column contains either:

o “Applying” —if the DSI is applying messages to the standby database, or

e “Ignoring” —if the DSI iswaiting for a marker.

Administration Guide 515

Setting up clients to work with the active data server

admin who, sgm

admin sqm_readers

The admin who, sgm command provides information about the state of stable
queues. In awarm standby application, the inbound queue is read by the
Distributor thread, if you have not disabled it, and by the standby DSI thread.
Replication Server cannot del ete messages from the inbound queue until both
threads have read and delivered them.

If Replication Server isnot del eting messages from theinbound queue, you can
use the admin who, sgm command to investigate the problem. The command
tells you how many threads are reading the queue and the minimum deletion
point in the queue.

The admin sgm_readers command monitors the read and del ete points of the
individual threads that are reading the inbound queue. If the inbound queueis
not being deleted, admin sqm_readers will help you find the thread that is not
reading the queue.

Theadmin sgm_readers command takes two parameters: the queue number and
the queue type for the logical connection.

You can find the queue number and queue typein the Info column of the admin
who, sgqm command output: the gueue number is the 3-digit number to the left
of the colon, while the queue type is the digit to the right of the colon.

Queue type 1 isan inbound queue. Queue type 0 is an outbound queue. The
inbound queue for alogica connection can be read by more than one thread.
For example, to find out about the threads reading inbound queue number 102,
execute admin sqm_readers as follows:

admin sgm readers, 102, 1

Setting up clients to work with the active data server

516

When you switch the active and standby databases in Replication Server using
the switch active command, Replication Server does not switch client
applicationsto the new active data server and database automatically. You must
devise amethod to switch client applications. This section describes three
sample methods for setting up client applications to connect to the currently
active data server. You can create:

Replication Server

CHAPTER 15 Managing Warm Standby Applications

 Twointerfacesfiles

« Aninterfacesfile entry with a symbolic data server name for client
applications

¢ A mechanism that automatically maps the client application data server
connections to the currently active data server

You must implement your method before you set up the warm standby
databases.

Regardless of your method for switching applications, do not modify the
interfaces file entries used by Replication Server.

Two interfaces files

With thismethod, you set up two interfacesfiles, onefor the client applications
and one for Replication Server. When you switch the clients, you can modify
their interfaces file entry to use the host name and port number of the data
server with the new active database.

Symbolic data server name for client applications

Administration Guide

With this method, you create an interfaces file entry with a symbolic data
server name for client applications.

The interfaces file might contain entries like these:

Table 15-5: Symbolic data server name in interfaces file

Data server name Host name Port number
Client applications CLIENT_DS machine_1 2800
Active database TOKYO_DS X machine_1 2800
Standby database TOKYO DS Y machine_2 2802

You could create an interfaces entry for adata server named CLIENT_DS.
Client applications would always connect to CLIENT_DS. The CLIENT_DS
entry would use the same host name and port number as the data server with
the active database.

Replication Server connects to the same host name and port number as the
client applications but uses a different data server name. In this example,
Replication Server would switch between the TOKYO_DS X and
TOKYO_DS Y dataservers.

517

Altering warm standby database connections

After switching the active database, you would change the CLIENT_DS
interfaces entry to the host name and port number of the data server with the
new active database—in this example, machine 2 and port number 2802.

Map client data server to currently active data server

With this method, you create a mechanism, such as an intermediate Open
Server application, that automatically maps the client application data server
connections to the currently active data server.

Refer to Open Server documentation, such as the Open Server Server-
Library/C Reference Manual, for more information about how to create such
an Open Server application.

Altering warm standby database connections

This section describes options for reconfiguring or modifying the logical
database connection and the physical database connections. Under ordinary
circumstances, if you set up awarm standby application through the usual
procedure, the default settings will work correctly.

Altering logical connections
Use the alter logical connection command to modify parameters that:
e Affect logical connections
e Enable or disable the Distributor thread
¢ Enable or disable the replication of truncate table to the standby database

Changing parameters affecting logical connections

To update parameters that affect logical connections, log in to the source
Replication Server and, at the isgl prompt, enter:

alter logical connection
to logical_ds.logical_db
set logical_database_param to 'value'

518 Replication Server

CHAPTER 15 Managing Warm Standby Applications

wherelogical_dsisthe dataserver namefor thelogical connection, logical_db
is the database name for the logical connection, logical _database paramisa
logical database parameter, and value is a character string setting for the
parameter.

New settings take effect immediately.

Warning! You should reset the logical connection parameters
materialization_save_interval and save_interval only when thereisaseriouslack
of stable queue space. Resetting them (from strict to a given number of
minutes) may lead to message |oss at the standby database.

Table 15-6 displays the configuration parameters that affect logical database
connections.

Table 15-6: Configuration parameters affecting logical connections

logical_database_param

value

materialization_save_interval

Materialization queue save interval. This parameter is only used for standby
databases in awarm standby application.

Default: “strict” for standby databases

replicate_minimal_columns

Specifies whether Replication Server should send all replication definition
columns for all transactions or only those needed to perform update or delete
operations at the standby database. Values are “on” and “off.”

Replication Server usesthis value in standby situations only when areplication
definition does not contain a“send standby” parameter. Otherwise, Replication
Server uses the value of the “replicate minimal columns’ or “replicate all
columns” parameter in the replication definition.

Default: on

save_interval

The number of minutesthat the Replication Server saves messages after they have
been successfully passed to the destination data server. See“ Save interval for
recovery” on page 633 for details.

Default: 0 minutes

Administration Guide

519

Altering warm standby database connections

logical_database_param

value

send_standby_repdef_cols

Specifies which columns Replication Server should send to the standby database
for alogical connection. Overrides “send standby” options in the replication
definition that tell Replication Server which table columnsto send to the standby
database. Values are:

* on —send only the table columns that appear in the matching replication
definition. Ignore the “send standby” option in the replication definition.

« off —send all table columns to the standby. Ignore the “ send standby” optionin
the replication definition.

¢ check_repdef —send all table columns to the standby based on “send standby”
option.
Default: check_repdef

Disabling the Distributor thread

520

If you do not replicate data from the active database into databases other than
the standby database, Replication Server does not need a Distributor thread for
the logical connection. You can disable the Distributor thread to save
Replication Server resources.

To disable the Distributor thread, you must first drop any subscriptionsfor the
datain thelogical database. Then execute alter logical connection at the
Replication Server:

alter logical connection
to logical ds.logical db
set distribution off

If you decide later to replicate data out of the active database, you can use this
command to reenable the Distributor thread.

Warning! If you disable the Distributor thread and then drop the standby
database from the replication system, no Replication Server threadswill beleft
to read the inbound queue from the active database. The inbound queue will
continue to fill until you either add another standby database, set distribution
to “on” for the logical connection, or drop the active database from the
replication system.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

Replicating truncate table to standby databases

Altering physical

Administration Guide

Replication Server copies execution of truncate table to warm standby
databases. The active and standby databases must be Adaptive Server version
11.5 or later to support this feature.

To enable or disable replication of truncate table, log in to the source
Replication Server and enter:

alter logical connection
to logical ds.logical db
set send truncate table to {on | off}

If your warm standby application was created before you upgraded or installed
Replication Server version 11.5 or later, Replication Server does not copy
truncate table to the standby database unless you enable this feature with alter
logical connection. To preserve compatibility with existing warm standby
applications, the default setting is “ off.”

If your warm standby application was created after you upgraded or installed
Replication Server version 11.5 or later, Replication Server automatically
copies truncate table to the standby database unless you disable this feature
with alter logical connection. The default settingis*on.”

connections

Use the alter connection command at the source Replication Server to modify
parameters that affect physical connections for warm standby applications:

alter connection to data server.database
set database param to 'value'

where data_server isthe destination data server, database is the database the
data server manages, database _paramis a parameter that affects the
connection and value is a setting for database_param.

You must suspend the connection before altering it; then, after executing alter
connection, you resume the connection for new parameter settingsto take
effect. Refer to “ Altering database connections’ on page 177 for more
information.

521

Altering warm standby database connections

Configuring triggers in the standby database

By default, the standby DS thread executes a set triggers off Adaptive Server
command when it logsin to astandby database. This prevents Adaptive Server
from firing triggers for the replicated transactions, thereby preventing
duplicate updates in the standby database.

You can alter the default behavior by using the alter connection command to
configure a connection to fire or not fire triggers. To do this, set the
dsi_keep_triggers configuration parameter to “on” or “off.” The default
dsi_keep_triggers setting for all connections except standby databasesis “on.”

Configuring replication in the standby database

The dsi_replication configuration parameter specifies whether or not
transactions applied by the DSI are marked in the transaction log as being
replicated. It must be set to “on” for the active replicate database. By defaullt,
itisset to“off” for the standby database and set to “on” for all other databases.

When dsi_replication is set to “off,” the DSI executes set replication off in the
database, preventing Adaptive Server from adding replication information to
log records for transactions that the DSI executes. Since these transactions are
executed by the maintenance user and, therefore, are not replicated further
(except if thereis a standby database), setting this parameter to “ off” where
appropriate writes less information into the transaction log.

Use admin who, dsi to see how this parameter is set for a connection.

Changing configuration parameters in the standby database

When you create the standby database, thefollowing configuration parameters,
if they are set for the active database, are copied from the active database to the
standby database:

522 Replication Server

CHAPTER 15 Managing Warm Standby Applications

Table 15-7: Configuration parameters copied to standby database

batch batch_begin command_retry
db_packet_size dsi_charset_convert dsi_cmd_batch_size
dsi_cmd_separator dsi_fadeout_time dsi_keep_triggers
dsi_large_xact_size dsi_max_cmds_to_log dsi_max_text_to_log
dsi_num_large_xact_threads dsi_num_threads dsi_replication
dsi_serialization_method dsi_sql_data_style dsi_sqt_max_cache_size
dsi_xact_group_size dsi_xact_in_group dump_load

parallel_dsi

You can change the setting of any of these configuration parameters. See
Chapter 7, “Managing Database Connections’ for more information.

Dropping logical database connections

If you are dismantling awarm standby application, you may need to remove a
logical database from the replication system. To do this, drop the standby
database, then execute the drop logical connection command. Before you
execute the command, you must drop the standby database. See “Dropping
database connections’ on page 192 for information about dropping physical
database connections.

The syntax for drop logical connection is:
drop logical connection to data_server.database

data_server and database represent the logical data server and logical
database.

For example, to drop the connection to the pubs2 logical database in the LDS
logical data server, enter:

drop logical connection to LDS.pubs2

Dropping a logical database from the ID Server

Administration Guide

When awarm standby application exists in the replication system, logical
databases, along with physical databases, data servers, and Replication
Servers, are listed in thers_idnames system table in the RSSD for the ID
Server. Occasionally, it may be necessary to remove the entry for alogical
database from this system table.

523

Warm standby applications using replication

For example, if adrop logical connection command fails, you may haveto force
the ID Server to delete from the rs_idnames system table the row that
correspondsto thelogical database. Logical database connections show an “L”
in the ltype column.

The sysadmin dropldb command logsin to the ID Server and del etes the entry
for the specified logical database. The syntax is:

sysadmin dropldb, data_server, database

data_server and database refer to the logical data server and the logical
database names.

You must have sa permission to execute any sysadmin command.

Warm standby applications using replication

This section describes warm standby applications that involve replication,
where the logical database serves as a primary or replicate database in the
replication system.

Also see “Using replication definitions and subscriptions’ on page 531.

Warm standby application for a primary database

524

Figure 15-6 illustrates a warm standby application for a primary database. In
this example, one Replication Server manages three databases:

e Theactive database for alogical primary database,
¢ The standby database for alogical primary database, and

¢ A replicate database that has subscriptions for the datain the logical
primary database.

In this example, a single Replication Server manages both the primary and
replicate databases. In other instances, different Replication Servers may
manage the primary and replicate databases.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

From client
applications to
inbound queue

From inbound queue
to replicate database

Administration Guide

Figure 15-6: Warm standby application for a primary database

eplication Serw
Zlients
Active Standhby
a Server Data Server
Active Standhby
atabase Database

Cuthound Clueue

If Replication Server does not manage
a thereplicate database, transactions are
] copied to the replicate Feplication
Server for execution in the replicate

Replicate Replicate database.
Database Data Server

The numbersin Figure 15-6 indicate the flow of transactions from client
applications through the replication system in a warm standby application for
aprimary database.

In Figure 15-6, numbers 1 through 3 trace transactions from clientsto an
inbound queue in the Replication Server:

¢ Clients execute transactions in the active primary data server.
e Theactive primary data server updates the active primary database.

* TheRepAgent thread for the active primary database reads transactions
for replicated datain the database log. It forwards the transactions to the
Replication Server, which writes them into an inbound queue.

All transactions for replicated data, including those executed by the
mai ntenance user, are sent to the Replication Server for application in the
standby database.

In Figure 15-6, numbers4 through 8 trace transactions from theinbound queue
to the replicate database:

525

Warm standby applications using replication

From inbound queue
to standby database

e TheDistributor thread reads transactions from the inbound queue.

¢ TheDistributor thread processes transactions against subscriptions and
writes replicated transactions into an outbound queue.

Transactions executed by the maintenance user, which are always
replicated into the standby database (because you set the
send_warm_standby_xacts parameter when you configure RepAgent with
sp_config_rep_agent), are not replicated to replicate databases unless you
also set the send_maint_xacts_to_replicate parameter for RepAgent.

¢ A DSl thread reads transactions from the outbound queue.
* The DSl thread executes the transactions in the replicate data server.
e Thereplicate data server updates the replicate database.

If thetransactions are to be replicated to adatabase managed by adifferent
Replication Server, they are written into an RSI outbound queue managed
by an RSI thread instead of a DSI thread. The RSI thread delivers the
transactions to the other Replication Server.

In Figure 15-6, numbers 9 through 11 trace transactions from the inbound
gueue to the standby database for the logical primary database:

¢ Thestandby DSI thread reads transactions from the inbound queue.
¢ Thestandby DSI thread executes transactions in the standby data server.
¢ The standby data server updates the standby database.

The inbound queue is read by the standby DSl and the Distributor. The two
threads do their work concurrently. Messages cannot be truncated from the
inbound queue until both threads have read them and delivered them to their
destination. The messages remain in the queue until the DSI has applied them
to the standby database and, if there are subscriptions or replicated stored
procedure executions, the Distributor has written them to the outbound queue.

Depending on your replication system, the transactions may be replicated into
the standby database before the replicate database. However, Replication
Server guarantees that the standby primary database and replicate databases
will be kept in sync with the active primary database.

Warm standby application for a replicate database

526

Figure 15-7 illustrates awarm standby application for a replicate database. In
this example, asingle Replication Server manages three databases:

Replication Server

CHAPTER 15 Managing Warm Standby Applications

Administration Guide

e A primary database,
« Theactive database for alogical replicate database, and
« The standby database for alogical replicate database.

Thelogical replicate database has subscriptions for the datain the primary
database. Therefore, updates from the primary database are replicated to both
the active and the standby databases.

In this example, a single Replication Server manages both the primary and
replicate databases. In other instances, different Replication Servers may
manage the primary and replicate databases.

527

Warm standby applications using replication

Figure 15-7: Warm standby application for a replicate database

Clients If Replication Server does not manage the primary
database, replicated data is received from the primary
Replication Server and written directly into the out-
Vl bound queue, bypassing steps 1-5.

Primary
Data Server
> Replication Server
Primary
Database Inbound Queue
3 Y4
Distributor

E

@utbound QueueD
i 6 Standb
Active < v y
Data Server é) I DS B g é) Data Server

7

Standby
Database

Active 11

Standby
Database DS|

* 10
9
{Inbound Queue)

The numbersin Figure 15-7 indicate the flow of transactions from client
applications through the replication system in awarm standby application for
areplicate database.

From client In Figure 15-7, numbers 1 through 8 trace transactions from clients to the

applications to primary ; : C . .]
and active databases primary database, and, via normal replication, to the active replicate database:
¢ Clients execute transactions in the primary data server.

e Theprimary data server updates the primary database.

528 Replication Server

CHAPTER 15 Managing Warm Standby Applications

RepAgent for the primary database reads transactions for replicated data
in the transaction log and forwards them to the Replication Server, which
writes them into an inbound queue.

The Distributor thread reads transactions from the inbound queue.

The Distributor processes transactions against subscriptions and writes
replicated transactions into an outbound queue.

If the Replication Server managing the warm standby application for the
replicate database does not also manage the primary database, replicated
dataisreceived from the primary Replication Server and written directly
to the outbound queue. Steps 1 through 5 are bypassed.

A DSl thread reads transactions from the outbound queue.

TheDSI thread executesthetransactionsin the replicate dataserver, which
is the active data server for the warm standby application.

The active data server updates the active database.

If the transactions originate in a primary database managed by a different
Replication Server, the Distributor thread in the primary Replication
Server writes them into an RSI outbound queue. Then they are replicated
to a DSl outbound queue in the replicate Replication Server in order to be
applied in the active database for the logical replicate database.

From active database In Figure 15-7, numbers 9 through 12 trace transactions from the active
to standby database database for the logical replicate database to its standby database:

Administration Guide

RepAgent for the active database reads the transactions in the active
database log and forwards them to the Replication Server, which writes
them into an inbound queue.

All transactions for replicated data, including those executed by the
mai ntenance user, are sent to the Replication Server for application in the
standby database.

The standby DSI thread reads transactions from the inbound queue.
The standby DSI thread executes transactions in the standby data server.
The standby data server updates the standby database.

529

Warm standby applications using replication

Configuring logical connection save intervals

The DSI queue save
interval

The materialization
queue save interval

530

This section describes some options for reconfiguring the save intervals for a
logical replicate database. A saveinterval for a connection specifies how long
messages will be retained in a stable queue before they can be deleted. If you
set up awarm standby application through the usual procedure, the default
settings will work correctly.

You can use the configure logical connection command to configure the DSI
queue save interval and the materialization queue save interval for the logical
connection.

Refer to “configure logical connection” in Chapter 3, “Replication Server
Commands,” in the Replication Server Reference Manual for the syntax of this
command.

Warning! The DSI queue save interval and the materialization queue save
interval settings for alogical connection should be reset only under serious
conditions stemming from alack of stable queue space. Resetting these save
intervals (from strict to a given number of minutes) may lead to message loss
at the standby database. Replication Server cannot detect thistype of loss; you
have to verify the integrity of the standby database yourself.

By default, the DS| queue saveinterval for thelogical connectionisset to 'strict'
when you create a standby database. This causes Replication Server to retain
DSl queue messages until they are delivered to the standby database. If you
must change the DSI queue save interval for the logical connection, use the
configure logical connection command.

For example, to force areplicate Replication Server to save messages destined
for itslogical replicate data server LDS for one hour (sixty minutes), enter the
following command:

configure logical connection to LDS.logical pubs2
set save_ interval to '60'

To reset this save interval back to 'strict', enter:

configure logical connection to LDS.logical pubs2
set save_ interval to 'strict'

The materialization queue save interval for the logical connection is set to
'strict' by default when you create a subscription. This causes Replication
Server to retain materialization queue messages until they are delivered to the
standby database. If you must change the materialization queue save interval
for the logical connection, use the configure logical connection command.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

For example, to force areplicate Replication Server to save messagesin the
materialization queue for itslogical replicate data server LDS for one hour
(sixty minutes), enter the following command:

configure logical connection to LDS.logical pubs2
set materialization save interval to '60'

To reset this save interval back to 'strict', enter:

configure logical connection to LDS.logical pubs2
set materialization save interval to 'strict'

Using replication definitions and subscriptions

This section contains information about using warm standby databases with
replication definitions and subscriptions. See “Warm standby applications
using replication” on page 524 for more information about warm standby
applications for aprimary or replicate database.

Creating replication definitions for warm standby databases

Administration Guide

Replication Server does not require replication definitions to maintain a
standby database, although using replication definitions can improve
performance when replicating into a standby database. You can create a
replication definition for each tablein the logical database. You can also use
function replication definitions when replicating into a standby database.

Replication definitions can change how Replication Server replicates datainto
a standby database, allowing you to optimize your warm standby application
or enable a non-default behavior that your application requires.

You can use replication definitions in awarm standby application in the
following scenarios:

« Toimprovethe performance of the replication system, as described under
“Using replication definitions to optimize performance” on page 534.

* Innormal replication into or out of the logical database, as described in
“Warm standby applications using replication” on page 524.

531

Using replication definitions and subscriptions

alter table support for warm standby

No replication definition

Adaptive Server Enterprise version 12.0 and later allows usersto alter existing
tables— add non-nullable columns, drop columns, and modify column
datatypes.

This section describes how Replication Server supportstable changesresulting
from the alter table command when the table has no subscriptions.

Note To support table changes that result from alter table when subscriptions
exist for that table, you need to ater the table’s replication definition. See
“Modifying replication definitions” on page 294 for instructions.

In previous releases, when a replication definition was defined for a table,
Replication Server always used the column datatype defined in the warm
standby replication definition. Beginning with Replication Server version 12.0,
and depending on the situation, Replication Server may or may not useatable’s
replication definition.

When you use alter table against a table without replication definitions,
Replication Server sends warm standby databases the same information it
receivesfrom the primary server. All options of alter table are supported. When
you execute alter table at the primary, the command is replicated to the warm
standby, and replication to the standby continues—no action isrequired in the
Replication Server.

See version 12.0 of the Adaptive Server Enterprise Reference Manual,
\Volume2: Commands for alter table syntax and information.

Alter table add column with default

532

Whenyou issuethe alter table command in the active database to add acolumn
with a default value, Adaptive Server creates a constraint with an auto-
generated name. When the command is replicated to the standby database, the
standby database al so creates the same constraint with another, different auto-
generated name. When you drop the constraint in the active database, the
standby database does not recognize the constraint name and generates a data
server interface (DS) error.

To avoid this, drop the constraint in the active database first. The data server
interface (DSI) shuts down automatically. Then drop the constraint created in
the standby database and issue the resume dsi skip transaction command.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

An aternative workaround is to execute:

alter table <table name>
replace <column name>
default null

This automatically drops the constraints created on both active and standby
Sites.

Warm standby with no send standby clause

When there is no send standby clause associated with any replication
definition, Replication Server sendswhatever datait receivesfrom the primary
table without referring to the replication definitions.

Replication Server uses the original column names and datatypes to send data
received from the RepAgent. Thereplication definitionisused only to find the
primary key. The primary keys are the union of primary keysin all replication
definitions for the table.

If schema changes do not involve dropping al primary key columnsin all
replication definitions of thetable, the scenario isthe same asdiscussedin “No
replication definition” on page 532. All optionsof alter table are supported, and
no action isrequired in the Replication Server.

You can alter the replication definition at any point to drop all primary keysin
the replication definitions, and add the new primary key columns to the
replication definitions before you alter the primary table.

Drop the old primary keys only after al of the old data rows are out of the
replication system. Otherwise, the Data Server Interface (DSI) shuts down. If
this occurs, see for recovery instructions.

Warm standby with send standby all columns clause

Administration Guide

When send standby all columns is associated with areplication definition,
Replication Server sends whatever data it receives from the RepAgent using
the original column names and datatypes. The replication definition is used
only to find the primary key.

If schema changes do not involve dropping all primary key columnsin the
replication definition with the send standby all columns clause, the scenariois
the same as“ No replication definition” on page 532. All options of alter table
are supported, and no action isrequired in the Replication Server.

533

Using replication definitions and subscriptions

You can alter the replication definition at any timeto drop al primary keysin
the replication definition with the send standby all columns clause, and add the
new primary key columns to the replication definition before you alter the
primary table.

Drop the old primary keys after all of the old datarows have left the replication
system. Otherwise, the Data Server Interface (DSI) shuts down. If this occurs,
see “Recovering from inbound queue problems” on page 299 for recovery
instructions.

Warm standby with send standby replication definition columns clause

When there is a send standby replication definition columns clausein the
replication definition, the standby will continue to use the replicate table name
and column names aswell asthe datatype defined in the table€’s corresponding
replication definition.

If you want the replication definition datatype to be used in the standby, always
create areplication definition with asend standby replication definition columns
clause.

Please note that:

e Toadd or ater columnsin the primary database, follow the “Migration
procedure” on page 296.

e Todrop columnsin the primary database, you do not need to ater the
replication definition of the table aslong as you do not drop all primary
key columns.

e Todrop al primary key columns, alter the replication definition to add
new primary key columns before you alter the primary table. You can drop
the old primary keys when the old data rows have been removed from the
replication system.

Using replication definitions to optimize performance

When you specify that you want to use a replication definition for replicating
into a standby database:

* Replication Server optimizesupdates and deletesby using the primary key
defined in the replication definition to generate the where clause.

534 Replication Server

CHAPTER 15 Managing Warm Standby Applications

Creating a replication
definition for
replicating into a
standby database

Specifying a primary
key

Updating minimal
columns

Administration Guide

¢ You can specify whether Replication Server uses the replication
definition’s replicate minimal columns setting for replicating into the
standby database. This setting indicates whether updates replace the
values for al columns or only the columns with changed values.

¢ You can specify whether Replication Server replicates all of atable’s
columns or al of astored procedure’s parameters to the standby database
or only those columns or parameters listed in the table or function
replication definition.

To create areplication definition just for replicating into the standby database,
use the send standby clause in the create replication definition command. The
replication definition’s primary key and replicate minimal columns setting will
be used in replicating into the standby database.

Refer to “create replication definition” in Chapter 3, “Replication Server
Commands,” in the Replication Server Reference Manual for detailed
information about using this command.

Replication Server generates awhere clause to specify target rows for updates
and deletes.

« If areplication definition for atable is marked with the send standby
clause, the generated where clause contains only the columns listed in the
primary key clause of the create replication definition command.

e If therearereplication definitionsfor atable but none are marked with the
send standby clause, the generated where clause contains the columns
listed in the union of the primary key clauses of all of the replication
definitions.

e If thereisno replication definition for atable, the generated where clause
includes all columnsin the table except text, image, rawobject, rawobject in
row, timestamp, and sensitivity columns.

If you createareplication definition for replicating into astandby database, you
can take advantage of another replication system performance optimization,
the minimal columns setting.

When you use the replicate minimal columns clause, replicated update and
delete transactions include only the required columns. Values for unchanged
columns can be omitted from update commands. Omitting the unnecessary
columns reduces the size of messages ddlivered through the replication system
and requires Adaptive Server to do less work.

If you are not using replication definitionsfor replicating into the standby, you
can still attain this performance benefit.

535

Using replication definitions and subscriptions

Specifying columns to
replicate into the
standby database

Specifying parameters
to replicate into the
standby database

Minimal column replication occurs automatically if you have no replication
definitions for atable or if you have replication definitions for a table but do
not use one for replicating into the standby database.

If you create areplication definition for replicating into astandby database, you
can specify which set of columnsto replicate:

e Specify send standby or send standby all columns to replicate all the
columnsin the table into the standby database.

¢ Specify send standby replication definition columns to replicate only the
replication definition’s columns into the standby database.

Refer to “create replication definition” in Chapter 3, “ Replication Server
Commands,” inthe Replication Server Reference Manual for moreinformation
about using the send standby clause with the create replication definition
command.

If you create a function replication definition, you can specify which set of
parameters to replicate:

¢ Specify send standby all parameters (or omit the all parameters clause) to
replicate all the parameters for the stored procedure into the standby
database.

¢ Specify send standby replication definition parameters to replicate only the
replication definition’s parametersinto the standby database.

If areplicated stored procedure has no function replication definition, when the
stored procedureis executed, Replication Server replicatesall of its parameters
from the active database into the standby database. You can create only one
function replication definition per replicated stored procedure.

Refer to “create function replication definition” in Chapter 3, “Replication
Server Commands,” in the Replication Server Reference Manual for more
information about using the send standby clause with the create function
replication definition command.

Using replication definitions for tables with more than 1024 columns

536

Adaptive Server limits the number of expressionsin the where clauseto 1024.
For warm standby applications, you must use replication definitions to
replicate tables with more than 1024 columns, and make sure that the primary
key is not more than 1024 columns. Adaptive Server generates an error if the
Replication Server where clause has more than 1024 columns.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

See “Using replication definitions to optimize performance” on page 534 for
more information about the primary key and replication into the standby
database.

Using replication definitions to copy redundant updates

Without areplication definition, Replication Server does not replicate
redundant updates to the warm standby. That is, if an update merely changes
the current value to the same value, and thus the before and after images are
identical, Replication Server does not replicate the update.

However, if you want to replicate redundant updates, create a replication
definition for the column that includes the send standby replication definition
parameters option.

If you create areplication definition for a column, Replication Server always
sends redundant updates, even when the replication definition is created with
the replicate minimal columns option.

Using subscriptions with warm standby application

Although subscriptions are not used in replicating from the active to the
standby database, you can:

e Create subscriptions for the datain alogical primary database, or

e Create subscriptionsin order to replicate data from other databasesinto a
logical replicate database.

The create subscription and define subscription commands use the logical
database and data server names instead of the physical names.

See “Warm standby applications using replication” on page 524 for more
information about warm standby applications for a primary or replicate
database. Also see Chapter 11, “Managing Subscriptions’ for more
information about subscriptions and subscription materialization.

Restrictions on using subscriptions

Replication Server supportsall forms of subscription materialization and
dematerialization in warm standby applications. These restrictions apply to the
creation of subscriptions that replicate data from or into warm standby
databases:

Administration Guide 537

Using replication definitions and subscriptions

e Whenthereisalogical connection for adatabase, you cannot create a
subscription for the physical active or standby database. You must create
the subscription for the logical database in order to replicate subscription
data into or from both the active and standby databases.

¢ You cannot create subscriptions while adding the standby database to the
replication system. You must wait until the standby database has been
properly initialized.

¢ You cannot add the standby database to the replication system while any
subscriptions are being created.

¢ You cannot create new subscriptions while the switch active command is
executing.

Subscription materialization for logical primary database

This section describes subscription materialization issuesfor alogical primary
database. It also describes what happens if you execute the switch active
command for alogical primary database during subscription materialization.

During subscription materialization, datais selected from the active primary
database into a materialization queue.

When you execute the switch active command, the primary Replication Server
replicates RSSD information to notify replicate sites that the active database
has been changed. When areplicate Replication Server with a materializing
subscription receives thisinformation, the materialization queueis dropped. A
new queue is built by reselecting the subscription data from the new active
primary database.

Note The RepAgent thread for the RSSD of the primary Replication Server
must be running for replicate Replication Serversto detect that the active
database has been changed.

Subscription materialization for logical replicate database

538

This section describes subscription materialization issuesfor alogical replicate
database. It also describes what happensif you execute the switch active
command for alogical replicate database during subscription materialization.

The following sections discuss each subscription materialization method.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

Atomic materialization

When you use atomic materialization, Replication Server setsthe save interval
for the materialization queue to 'strict'. Transactions are not deleted from the
materialization queue until the data has been applied to the active database and
replicated into the standby database.

Replication Server executes amarker in the active replicate database when the
materialization queue has been applied. The marker marks the start of
transactions that execute after the materialization queue is applied.

When the marker is executed at the active replicate database, Replication
Server writes an informational message likethisinitslog:

I. 95/10/03 18:00:15. REPLICATE RS: Created atomic subscription
<publishers sub> for replication definition <publishers rep> at active
replicate for <LDS.pubs2>

When the marker arrives at the standby replicate database, Replication Server
writes an informational message like thisin itslog:

I. 95/10/03 18:00:15. REPLICATE RS: Created atomic subscription
<publishers sub> for replication definition <publishers rep> at standby
replicate for <LDS.pubs2>

Nonatomic
materialization

Bulk materialization

Administration Guide

Materialization is now complete and Replication Server drops the
materialization queue. The subscriptionisconsidered VALID at both theactive
and the standby replicate database.

If you execute the switch active command while the materialization queueis
being processed, Replication Server reapplies the materialization queue to the
new active database. If you used the incrementally option to create the
subscription, only the batches of materialization rows that were not already
replicated into the new active database are reexecuted.

When you use nonatomic materialization, the save interval isset to 0, allowing
Replication Server to delete rows from the materialization queue after they are
applied to the active database.

If asubscription is materializing when you execute the switch active command,
Replication Server finishes processing the materialization queue, but marksthe
subscription “suspect.” Use the check subscription command to find the
subscription status in the active and replicate databases. You must drop and re-
create suspect subscriptions.

If you use bulk materialization to create a subscription that replicates datainto
awarm standby application, you must ensure that the subscription datais
loaded into the active and standby replicate databases.

539

Using replication definitions and subscriptions

If you load the data with a method that |ogs the inserted rows, such as logged
bep, Replication Server replicates the rows into the standby database. If you
load the data with a non-logged method, you must aso load it into the standby
database because the active database |og contains no insert recordsto replicate
into the standby database.

During bulk materialization, you execute the activate subscription with
suspension command before you load the subscription data into the replicate
database. By default, activate subscription with suspension suspends the DSI
threadsfor both the active database and the standby database. Suspending DS
threads alows you to load the data into both databases.

If you load the data using logged bcp or some other method that logs the rows,
execute activate subscription with suspension at active replicate only so that
Replication Server only suspends the DSI for the active database. This allows
the inserted rows to be replicated from the active database into the standby
database.

Checking subscriptions

For awarm standby application for alogical replicate database, you can usethe
check subscription command to check subscription status. The Replication
Server managing the warm standby application returns either one or two status
messages, depending on whether or not the statusis different for the active and
the standby database.

For example, while you are creating a subscription, the materialization status
may be VALID at the active database and ACTIVATING at the standby
database.

Dropping subscriptions

While executing
switch active

540

For alogical replicate database, you can drop a subscription using the drop
subscription command with the with purge option. A drop subscription marker
follows the dematerialization data from the DSI queue to the active database,
and then travel s to the standby database. After the marker has been received at
both databases, subscription data is deleted from both databases.

You can execute the switch active command at the replicate Replication Server
while you drop a subscription using the drop subscription command with the
with purge option. Replication Server suspends DSI threads and temporarily
suspends dematerialization. After switch active completes, the DSI threads are
resumed and dematerialization restarts.

Replication Server

CHAPTER 15 Managing Warm Standby Applications

Suspect drop
subscription

Dropping a subscription using the with purge option for alogical replicate
database may lead to a suspect drop subscription if:

e Thesubscription is materiaizing in the active database, and
¢ You switch the active and standby databases, then

¢ You drop the subscription while it is materializing in the new active
database.

Dematerialization restarts and proceeds normally for the new active database,
but the new standby (old active) database may retain some subscription data
that is not purged. To resolve the discrepancy, you can reconcil e the active and
the standby database using the rs_subcmp program, or you can drop and re-
create the standby database.

For example, you may see awarning message like thiswhen you try to execute
drop subscription:

W. 95/10/02 20:59:15. WARNING #28171 DSI(111l SYDNEY DS.pubs2) -

/sub_dsi.c(1231)

REPLICATE RS: Dropped subscription <publishers sub> for replication
definition <publishers rep> at standby replicate for <SYDNEY DS.pubs2>
before it completed materialization at the Active Replicate. Standby
replicate may have some subscription data rows left in the database

Missing columns when you create the standby database

Administration Guide

When you create a standby database for an existing database that has
replication definitions, missing columns may result under the following
combination of circumstances:

» If theexisting database hasareplication definition that does not include all
columnsin the table, and

* Aninsert or update transaction that has not been committed isin the
inbound queue, and

* You create a standby database for the existing database (now the active
database), after which

¢ The transaction commits.

541

Loss detection and recovery

Although, by default, astandby database is supposed to receive al columns, at
the time the transaction began, the standby database did not exist. Replication
Server would have discarded values for columns not in the replication
definition. If acolumn is not in the replication definition and the standby
database allows a null value for the column, the row can be inserted into or
updated in the standby database without the missing value. Otherwise, you
must reconcile the databases yourself.

Loss detection and recovery

Creating a warm standby application introduces additional types of loss
detection messages into areplication system. See Chapter 19, “Replication
System Recovery” for general information on Replication Server recovery, and
for recovery procedures.

If you rebuild queuesin a Replication Server that participatesin awarm
standby application, the Replication Server may detect osses between any of
the following databases:

Table 15-8: Loss detection in warm standby applications

Loss detected from To

Logicd replicate database Logical primary database
Logical primary database Physical replicate database
Physical primary database Logical replicate database
Physical active database Physical standby database
Logical primary database Replication Server

If you need to use the ignore loss command in database recovery operations
where awarm standby applicationisinvolved, usethe samelogical or physical
data server and database designations that appear in the |oss detection
messages you received.

542 Replication Server

CHAPTER 16

Performance Tuning

To meet the needs and demands of your Replication Server system, you
must manage resources effectively and optimize the performance of
individual Replication Servers. You can affect the performance of a
Replication Server by changing thevalues of configuration parameters, by
using parallel DSI threads, or by choosing disk allocations. To manage
these resources successfully, you should understand something about
Replication Server’sinternal processing.

Name Page
Replication Server internal processing 543
Configuration parameters that affect performance 551
Suggestions for using tuning parameters 559
Using parallel DSI threads 566
Using multiprocessor platforms 592
Allocating queue segments 593

Replication Server internal processing

Administration Guide

During replication, data operations are carried out by several Replication
Server threads. On UNIX platforms, they are POSIX threads. On
Windows platforms, they are WIN32 threads. Replication Server also
stores data in queues and relies on the Replication Server System
Database (RSSD) for critical system information. This section describes
how these internal operations support various processes within the
primary and replicate Replication Servers.

543

Replication Server internal processing

Threads, modules, and daemons

Replication Server runs multiple threads concurrently. The total number of
threads depends on the number of databases that a Replication Server manages
and the number of Replication Serversto which it has direct routes. Each
thread performs a specific function such as managing a user session, receiving
messages from a RepAgent, receiving messages from another Replication
Server, or applying transactions to databases.

Some threads call specific portions (or “modules’) of Replication Server to
determine the destination of messages and transactions, and to determine what
operations to replicate and how to replicate them.

Daemon threads, which run in the background and perform specified
operations at predefined times or in response to certain events, run during such
Replication Server activities as subscription materialization.

For details on Replication Server threads, modules, and daemonsinvolved in
processes specific to the primary Replication Server, see “Processing in the
primary Replication Server” on page 544.

When you troubleshoot the replication system, verify the status of Replication

Server threads, modules, and daemons. See Chapter 13, “Verifying and
Monitoring Replication Server” for details.

Processing in the primary Replication Server

This section describes how atransaction that originatesin aprimary dataserver
is sent to the primary Replication Server and subsequently distributed to a
replicate Replciation Server asillustrated in Figure 16-1.

544 Replication Server

CHAPTER 16 Performance Tuning

Figure 16-1: Threads used for processing in the primary Replication
Server

Replicate 1
Data Server

S)

Primary Replicate 2
Data Server . Data Server
Replicate 1
Replication Server @ é)
Replication
Server A
Outbound \
Stable
Queue
Outbound @
Stable
Queue

Inbound
Stable
Queue

/

Replication agent user thread
The information in this section appliesto &l replication agents.

RepAgent logsin to Replication Server through an Open Client interface. It
scans the transaction log, convertslog recordsdirectly into LTL (Log Transfer
Language) commands, and sends them to Replication Server as soon asthey
are logged—either in batches or one at atime. Replication Server then
distributes the transaction information to subscribing replicate databases.

Replication Server has one RepAgent user thread for each primary database
that it manages. Thus, Replication Server has one RepAgent user thread for
each RepAgent. The RepAgent user thread verifiesthat RepAgent submissions
are valid and writes them into the inbound stable queue for the database.

Administration Guide 545

Replication Server internal processing

Stable Queue Manager thread

There is one Stable Queue Manager (SQM) thread for each stable queue
accessed by the primary Replication Server, whether inbound or outbound.
Each RepAgent user thread works with a dedicated SQM thread that reclaims
stable queue space after atransaction isforwarded to adata server or to another
Replication Server.

Stable Queue Transaction thread

Commands stored in transaction log records and in the inbound queue are
ordered according to the sequence in which they were committed—although
they are not necessarily grouped by transaction. It is the task of the Stable
Queue Transaction (SQT) thread to reassembl e transactions and place the
transactions in commit order. Transactions must be in commit order for final
application on the destination’s data servers and for materialization processing.

The SQT thread reassembl es transactions as it reads commands from its stable
gueue and keeps alinked list of transactions. When it reads a commit record,
the SQT thread makes that transaction available to the distributor thread or to
the DS thread, depending on what process required the SQT ordering of the
transaction.

When it reads arollback record, the SQT thread tells the SQM thread to delete
affected records from all stable queues. The SQT thread also notifies the DSI
thread when a transaction exceeds the large transaction threshold. See “Using
parallel DSI threads’ on page 566 for more information on transaction
thresholds.

Distributor thread and related modules

546

For each primary database managed by a Replication Server, thereisa
distributor (DIST) thread, which in turn uses SQT to read from the inbound
queue and SQM threads to write transactions to the outbound queue. Thus, for
example, if there are three primary databases, then there are three inbound
queues, and three DISTand SQT threads.

In determining the destination of each transaction row, the DIST thread makes
callsto the following modules: Subscription Resolution Engine, Transaction
Delivery, and Message Delivery. All DIST threads share these modules. These
modules, and the role they play in the replication system, are described in the
following sections.

Replication Server

CHAPTER 16 Performance Tuning

Subscription resolution engine

The subscription resolution engine (SRE) matches transaction rows with
subscriptions. When it finds a match, it attaches a destination-database ID to
each row. It marks only rows required for subscriptions, thereby minimizing
network traffic. If no subscriptions match, the DIST thread discards the row
data.

For each row, the SRE determines whether subscription migration occurs.

* A row migratesinto a subscription when its column val ues change so that
the row matches the subscription and must be added to the replicate table.

« A row migrates out of a subscription when its column values change so
that it no longer matches the subscription and must be deleted from the
replicate table.

When the SRE detects subscription migration, it determineswhich operationto
replicate (insert, delete, or update) to maintain consistency between the
replicate and primary tables.

Transaction Delivery module

The Transaction Delivery (TD) moduleiscalled by the DIST thread to package
transaction rows for distribution to data servers and other Replication Servers.

Message Delivery module

The Message Delivery (MD) moduleis called by the DIST thread to optimize
routing of transactionsto data servers or other Replication Servers. The DIST
thread passes the transaction row and the destination 1D to the MD module.
Using this information and routing information in the RSSD, the module
determines where to send the transaction:

 Toadataserver viaaDSI thread, or
* ToaReplication Server viaan RS| thread.

After determining how to send the transaction, the MD module places the
transaction into the appropriate outbound queue.

Data Server Interface threads

Replication Server starts DSI threads to submit transactions to areplicate
database to which it maintains a connection.

Administration Guide 547

Replication Server internal processing

Each DSl thread is composed of a scheduler thread (DSI-S) and one or more
executor threads (DSI-E). Each DSI executor thread opens an Open Client
connection to a database.

To improve performance in sending transactions from a Replication Server to
areplicate database it manages, you can configure a database connection so
that transactions are applied using more than one DSI executor thread. See
“Using parallel DSI threads’ on page 566 for a description of thisfeature.

The DSI scheduler thread calls the SQT interface to:

e Coallect small transactions into groups by commit order

e Digpatch transaction groups to the next available DSI executor thread
The DSl executor threads:

e Map functions using the function strings defined for the functions,
according to the function-string class assigned to the database connection

e Execute the transactions in the replicate database

e Take action on any errorsreturned by the data server; depending on the
assigned error actions, also record any failed transactionsin the exceptions

log
The DSI thread may apply a mixture of transactions from all data sources

supported by the Replication Server. The transactions are processed in the
single outbound stable queue for the replicate data server.

Replication Server Interface thread

548

RSl threads are asynchronous interfaces to send messages from one
Replication Server to another. One RSI thread exists for each destination
Replication Server to which the source database has a direct route.

The DIST thread in the primary Replication Server processes transactions,
causing those destined for other Replication Serversto be written to RSI
outbound queues. An RSl thread logs in to each replicate Replication Server
and transfers messages from the stable queue to the replicate Replication
Server.

When adirect route is created from one Replication Server to another, an RSI
thread in the source Replication Server logs in to the replicate Replication
Server. When an indirect routeis created, Replication Server does not create a
new stable queue and RSI thread. Instead, messages for indirect routes are
handled by the RSI thread for the direct route. For details, see Chapter 6,
“Managing Routes.”

Replication Server

CHAPTER 16 Performance Tuning

Miscellaneous daemon threads

The Replication Server daemon threads shown in Table 16-1 perform
miscellaneous tasks in the replication system.

Table 16-1: Additional Replication Server daemon threads

Thread or daemon name

Description

Alarm daemon (dALARM)

The alarm daemon keepstrack of alarms set by other threads, such asthe
fade-out time for connections and the interval for the subscription retry
daemon.

Asynchronous I/0O daemon (dA10O)

The asynchronous 1/0O daemon manages asynchronous I/O to Replication
Server stable queues.

Connection manager daemon (dCM)

The connection manager daemon manages connectionsto dataserversand
other Replication Servers.

Recovery daemon (dREC) The recovery daemon takes care of various operationsin connection with
warm standby applications, routing, and recovery procedures.
Counter daemon (dSTATS) The counter daemon manages the interface for flushing counters to the

RSSD, and calculates derived values when it awakens.

Subscription retry daemon (dSUB)

The subscription retry daemon wakes up after a configurable timeout
period (sub_daemon_sleep_time configuration parameter in thers_config
system table) and attempts to resume processing for subscriptions that
may have failed.

Version daemon (dVERSION)

The version daemon activates briefly when the Replication Server is
started for thefirst time after an upgrade. It communi cates the Replication
Server new version number to the ID Server.

RS user thread

The RS user thread manages connections from replicate Replication
Servers during the process of creating or dropping subscriptions.

See*" Subscription materialization methods’ on page 351 for the dataflow
involved in creating and dropping subscriptions.

USER thread

A USER thread is created when a user logsin to a Replication Server to
execute RCL commands.

Processing in the replicate Replication Server

This section describes the processes involved when areplicate Replication
Server receives incoming messages from a primary Replication Server.

“Processing in the primary Replication Server” on page 544 describes
processing for some of the threads—SQM, RSI, DSI—described in this
section. Refer to Figure 16-1 on page 545.

Administration Guide

549

Replication Server internal processing

)

Figure 16-2: Transaction processing in the replicate Replication Server

Primary
Replication Server
Other Replicate i
Outbound A Replicate
Stable Replication Server Data Server
Queue % E)
@ Replicate
Replication Server 4 4
v Outbound
Stable @
/ Queue
\ Outbound
Stable @ @
Queue

RSl user thread

550

The RSI user thread is a client connection thread for incoming messages from
another Replication Server. It calls the Message Delivery (MD) module to
determine whether to send the message to:

e A dataserver using the DSI thread, described in “ Data Server Interface
threads” on page 547. The DSl thread is composed of a scheduler thread
(DSI-S) and one or more executor threads (DSI-E).

e Another Replication Server using the RSI thread, described in
“Replication Server Interface thread” on page 548.

The RSI user thread writes commands destined for other Replication Servers
or databasesinto outbound queues. See” Processing in the primary Replication
Server” on page 544 for details on how messages are processed after they are
stored in the outbound queues.

Replication Server

CHAPTER 16 Performance Tuning

Configuration parameters that affect performance

Replication Server provides configuration parameters for improving
performance that affect the entire server, or are targeted for individual
connections or routes.

Replication Server parameters that affect performance

rs_init sets default configuration parameters after you install your Replication
Server. You can change the values of the configuration parameters shown in
Table 16-2 to improve Replication Server performance.

See “Changing Replication Server parameters’ on page 102 for information
on how to modify these parameters using configure replication server.

Table 16-2: Replication Server parameters that affect performance

Configuration parameter Description

exec_cmds_per_timeslice Specifies the number of LTL commandsan LTI or RepAgent executor thread can
process before yielding the CPU. By increasing this value, you allow the
RepAgent Executor to control CPU resources for longer periods of time, which
may improve throughput from RepAgent to Replication Server.

See “Controlling the number of commands the RepAgent executor can process”
on page 562.

Default: 5
Minimum: 1
Maximum: 2,147,483,647

exec_sgm_write_request_limit Specifiesthe amount of memory availableto the LTI or RepAgent executor thread
to queue up outstanding write requests. Once the limit is reached, the RepAgent
Executor thread sleeps until some of the outstanding writes have been compl eted.

See “ Controlling the number of outstanding bytes’ on page 562.
Default: 16,384 bytes

Minimum: 16,384

Maximum: 983,040 bytes

Administration Guide 551

Configuration parameters that affect performance

Configuration parameter

Description

init_sgm_writer_delay

The initial amount of time an SQM Writer should wait for more messages before
writing a partially full block of messages to the queue. The SQM Writer always
tries to write full blocksto the queue. If it has partiadly filled a block, and cannot
fill it, SQM Writer waits the amount of time specified by init_sqm_writer_delay
before rechecking whether messages are waiting to be added to the block. If no
messages exist, SQM Writer doubles the init_sgm_write_delay time. The SQM
Writer continues to double the delay time until it reaches the value of
init_sgm_writer_max_delay. At this point, SQM Writer writes the partially full
block.

See " Setting the amount of time SQM Writer waits” on page 559.
Default: 1000 milliseconds

init_sgm_writer_max_delay

The maximum amount of time an SQM Writer thread should wait for more
messages before writing a partialy full block of messages to the queue. See the
description of init_sgm_write_delay for more information. See also “ Setting the
amount of time SQM Writer waits” on page 559.

Default: 10,000 milliseconds

md_sgm_write_request_limit

Specifies the amount of memory available to the Distributor thread to queue up
outstanding write requests. Once the limit is reached, the Distributor thread sleeps
until some of the outstanding writes have been completed. See “Controlling the
number of outstanding bytes’ on page 562.

Default: 100,000 bytes
Minimum: 65,536 bytes
Maximum: 983,040 bytes

memory_limit

The maximum total memory the Replication Server can use.

Valuesfor several other configuration parameters are directly related to the
amount of memory available from the memory pool indicated by memory_limit.
These include exec_sgm_write_request_limit, md_sgm_write_request_limit,
queue_dump_buffer_size, sqt_max_cache_size, sre_reserve, and sts_cachesize.
Default: 20MB

rec_daemon_sleep_time

Specifies the sleep time for the recovery daemon, which handles “strict” save
interval messages in warm standby applications and certain other operations. See
“Setting wake up intervals’ on page 560.

Default: 2 minutes

send_enc_password

552

Ensures that all Replication Server client connections are made with encrypted
passwords—except for the first connection to the RSSD. Values are “on” and
“ off.ll

See “ Sending encrypted passwords for Replication Server client connections’ on
page 202 for more information.

Default: off

Replication Server

CHAPTER 16 Performance Tuning

Configuration parameter

Description

smp_enable

Enables symetric multiprocessing (SMP). Specifies whether Replication Server
threads should be scheduled internally by Replication Server or externaly by the
operation system. When Replication Server threads are scheduled internally,
Replication Server isrestricted to one machine processor, regardless of how many
may be available. Values are “on” and “ off.”

See “Making SMP more effective” on page 563.
Default: off

sgm_recover_segs

Specifiesthe number of stable queue segments Replication Server allocatesbefore
updating the RSSD with recovery QID information.

See “ Specifying the number of stable queue segments allocated” on page 563.

Default: 1
Minimum: 1
Maximum: 2,147,483,648

sgm_write_flush

Specifies whether or not writes to memory buffers are flushed to the disk before
the write operation completes. Values are “on” and “off.”

See also “ Stable devices: considerations.”
Default: on

sqt_init_read_delay

The length of time an SQT thread sleeps while waiting for an SQM read before
checking to seeif it has been given new instructions in its command queue. With
each expiration, if the command queueis empty, SQT doublesitssleeptimeupto
the value set for sqt_max_read_delay.

Default: 2000 milliseconds (ms)
Minimum: 1000 ms
Maximum: 86,400,000 ms (24 hours)

sqt_max_cache_size

Maximum SQT cache memory, in bytes. See “ Sizing the SQT cache” on page
560.

Default: 1,048,576 bytes

sqt_max_read_delay

The maximium length of time an SQT thread sleeps while waiting for an SQM
read before checking to see if it has been given new instructions in its command
queue.

Default: 10,000 ms (10 seconds)

Minimum: 1000 ms
Maximum: 86,400,000 ms (24 hours)

stats_daemon_sleep_time

Administration Guide

Number of seconds between RSSD flushes. See “ Setting wake up intervals’ on
page 560.

Default: 600 seconds
Minimum: 10 seconds
Maximum: 1,814,400 seconds (3 weeks)

553

Configuration parameters

that affect performance

Configuration parameter

Description

sts_cachesize

The total number of rows that are cached for each cached RSSD system table.
Increasing this number to the number of active replication definitions prevents
Replication Server from executing expensive table lookups.

Monitor whether the STS cache is too small by reviewing counter 11008 —
STSCacheExceed or examing the Replication Server log for warnings that rows
have been removed from the STS cache. See “ Caching system tables’ on page
560.

Default: 100

sts_full_cache_table name

Specifies an RSSD system table that isto be fully cached. Fully cached tables do
not require access to the RSSD for simple select statements.

See " Caching system tables’ on page 560 for alist of RSSD tables that can be
fully cached.

sub_daemon_sleep_time

Number of seconds the subscription daemon sleeps before waking up to recover
subscriptions. Therangeis 1 to 31,536,000.

See" Setting wake up intervals’ on page 560.
Default: 120 seconds

sub_sgm_write_request_limit

Specifies the memory available to the subscription
materialization/dematerialization thread. Once the limit is reached, the
subscription management thread blocks until enough data is written to the queue
to bring the amount of outstanding bytes to be written under this threshold.

Default: 16,384 bytes
Minimum: 16,384 bytes
Maximum: 983,040

Stable devices: cons

554

iderations

Like any application, Replication Server is subject to standard 1/0 and 1/0O
device best practices. You should consider the impact of contention for disk
Read/Write heads and 1/0 channel s when planning how your stable devices
will be used to support your stable queues. To the extent that you can dedicate
oneor more devicesto each queue, I/O will belessof aperformanceissue. This
includes guarding the devices from use by other processes such as primary or
replicate databases or RSSDs. You can use the database connection parameter
disk_affinity to establish affinities between queues and specific partitions that
are supported by dedicated devices.

For stable queuesinitialized on UNIX operating system files, the
sgqm_write_flush configuration parameter controls whether or not writes to
memory buffers are flushed to the disk before the write operation compl etes.

Replication Server

CHAPTER 16 Performance Tuning

When sgm_write_flush is on, Replication Server opens stable queues using the
O_DSYNCflag. Thisflag ensuresthat writes are flushed from memory buffers
to the disk before write operations complete. Because the data is stored on
physical media, Replication Server can always recover the datain the event of
asystem failure. Thisis the default setting.

When sgm_write_flush is off, writes may be buffered in the UNIX file system.
If subsequentf writes fail, automatic recovery is not guaranteed. Testing has
shown that when comparing the write rates of the various options for partition
types and I/O flushing that writing to a buffered file system with
sqm_write_flush on is up to five times slower than writes to raw partitions.
Further, testing has shown that writes to raw partitions are up to seven times
slower than writes to buffered file systems with sgm_write_flush off. Turning
sqm_write_flush off when using UNIX Buffered file systemsfor stable devices
provides peak I/O performance but with anincreased risk of dataloss. Provided
you keep primary database transaction log backups, that risk can be reduced or
eliminated.

Note Thesgm_write_flush setting isignored for stable queues initialized on
raw partitions or Windowsfiles. In these cases, write operations always take
place directly to media.

Connection parameters that affect performance

Table 16-3 describes the database connection parameters that can affect
performance. See Chapter 7, “Managing Database Connections,” for a
complete list of connection parameters.

Table 16-3: Connection parameters that affect performance

Configuration parameter Description
batch The default, “on,” alows command batches to a replicate database.
Default: on

db_packet_size

Administration Guide

The maximum size of a network packet. During database communication, the
network packet value must be within the range accepted by the database. You may
changethisvalueif you have a System 10 or later SQL Server or Adaptive Server
that has been reconfigured.

Default: 512-byte network packet for all Adaptive Server databases

555

Configuration parameters that affect performance

Configuration parameter ‘ Description

disk_affinity

Specifiesan alocation hint for assigning the next partition. Enter thelogical name
of the partition to which the next segment should be allocated when the current
partition isfull. Values are “ partition_name” and “ off.”

Default: off

dsi_cmd_batch_size

The maximum number of bytes that Replication Server placesinto acommand
batch.

Default: 8192 bytes

dsi_commit_check_locks_intrvl

The number of milliseconds (ms) the DS| executor thread waits between
executions of thers_dsi_check_thread_lock function string. Used with parallel
DSI. See“Using parallel DSI threads’ on page 566.

Default: 1000 ms (1 second)
Minimum: 0
M aximum: 86,400,000 ms (24 hours)

dsi_commit_check_locks_max

The maximum number of timesthe DS executor thread executes the
rs_dsi_check_thread_lock function string before rolling back and retrying a
transaction. Used with parallel DSI. See “Using parallel DSI threads’ on page
566.

Default: 400
Minimum: 1
Maximum: 1,000,000

dsi_commit_control

Specifieswhether commit control processing ishandled internally by Replication
Server using internal tables (on) or externally using the rs_threads system table
(off). Used with parallel DSI. See “Using parallel DSI threads’ on page 566.

Default: on

dsi_large_xact_size

The number of commands allowed in a transaction before the transaction is
considered to be large.

Minimum: 4

Default: 100

dsi_max_xacts_in_group

Specifies the maximum number of transactionsin a group. Larger numbers may
reduce commit processing at the replicate database, and thereby improve
throughput. Range of values: 1 —100.

See “ Specifying the number of transactionsin agroup” on page 564.

Default: 20

dsi_num_large_xact_threads

The number of parallel DSI threads to be reserved for use with large transactions.
The maximum value is one less than the value of dsi_num_threads.

Default: 0

dsi_num_threads

556

The number of parallel DSI threads to be used. The maximum valueis 255.
Default: 1

Replication Server

CHAPTER 16 Performance Tuning

Configuration parameter | Description

dsi_partitioning_rule Specifiesthe partitioning rules (one or more) the DS| usesto partition transactions
among available parallel DS threads. Values are origin, origin_sessid, none, time,
user, and name. See also “Partitioning rules: reducing contention and increasing
parallelism” on page 576.
You can specifify more than one value at atime. Separate values with acomma,
but no spaces. For example:
alter connection to TOKYO DS.pubs3
set dsi partitioning rule to ‘time,user’

Default: none

dsi_serialization_method Specifies the method used to maintain serial consistency between parallel DSI
threads when applying transactions to a replicate data server.

¢ no_wait — specifies that a transaction can start as soon asit is ready—uwithout
regard to the state of other transactions.

« wait_for_start — specifies that a transaction can start as soon as the transaction
scheduled to commit immediately before it has started.

* isolation_level_3— specifies that atransaction can start as soon asthe
transaction scheduled to commit immediately before it has started, and that
transaction isolation level 3 locking be used in the replicate data server.

« wait_for_commit — specifies that atransaction cannot start until the transaction
scheduled to commit immediately preceding it is ready to commit.

* none —same as wait_for_start. Retained for backward compatibility.

 single_transaction_per_origin —sameaswait_for_start withdsi_partitioning_rule
Set to origin. Retained for backward compatibility.

Default: wait_for_commit

dsi_sqt_max_cache_size Maximum SQT (Stable Queue Transaction) interface cache memory for the
database connection, in bytes.
The default, 0, means the current setting of the sqt_max_cache_size parameter is
used as the maximum cache size for the connection.

Default: 0

dsi_xact_group_size The maximum number of bytes, including stable queue overhead, to place into
onegrouped transaction. A grouped transaction isaset of transactionsthat the DSI
applies as a single transaction. —1 means no grouping.

Sybase recommends that you set dsi_xact_group_size to the maximum value and
use dsi_max_xacts_in_group to control the number of transactionsin agroup.
Maximum: 2,147,483,647

Default: 65,536 bytes

exec_cmds_per_timeslice Specifiesthe number of LTL commandsan LTI or RepAgent Executor thread can
process before it must yield the CPU to other threads. Therangeis 1to
2,147,483,648.

Default: 5

Administration Guide 557

Configuration parameters that affect performance

Configuration parameter ‘ Description

exec_sgm_write_request_limit Specifiesthe amount of memory availabletothe LTI or RepAgent Executor thread
for messages waiting to be written to the inbound queue.
Default: 16,384 bytes
Minimum: 16,384 bytes
Maximum: 983,040 bytes
md_sgm_write_request_limit Specifies the amount of memory available to the Distributor for messageswaiting
to be written to the outbound queue. The range is 65,536 to 983,040 bytes.
Default: 100,000 bytes
parallel_dsi A shorthand method for configuring parallel DS to default values. A value of
“on” setsdsi_num_threads to 5, dsi_num_large_xact_threads to 2,
dsi_serialization_method to wait_for_commit, and dsi_sqt_max_cache_size to 1
million bytes. A value of “off” setsthe parallel DS| values to their defaults. You
can set this parameter to “on” and then set individual parallel DSI configuration
parameters to fine-tune your configuration.

Default: off

Route parameters that affect performance

Table 16-4 describes the route configuration parameters that affect
performance. See Chapter 6, “Managing Routes,” for acomplete list of route
parameters.

Table 16-4: Route parameters that affect performance
Configuration parameter Description

rsi_batch_size The number of bytes sent to another Replication Server before a truncation point
isrequested, which allows Replication Server to delete messagesin the source RSI
queue. Therange is 1024 to 262,144.

Default: 262,144 bytes

rsi_packet_size Packet size, in bytes, for communications with other Replication Servers. The
rangeis 1024 to 8192.

Default: 2048 bytes

rsi_sync_interval The number of seconds between RSI synchronization inquiry messages. The
Replication Server uses these messages to synchronize the RSI outbound queue
with destination Replication Servers. The value must be greater than 0.
Default: 60 seconds

558 Replication Server

CHAPTER 16 Performance Tuning

Suggestions for using tuning parameters

This section provides basic recommendations for improving Replication
Server performance. Whether or not changing these configuration values
improves your system performance depends on your system configuration and
how Replication Server is used at your site.

Setting the amount of time SQM Writer waits

Administration Guide

Replication Server configuration parameters: init_sgm_write_delay and
init_sgm_write_max_delay

In alow-volume system, set init_sgm_write_delay and
init_sgqm_write_max_delay to alow value so that the SQM Writer need not wait
long before writing a partially full block. In a high-volume system, set these
parameters higher because the SQM Writer rarely waitsto fill a block.

Monitor how often the SQM Writer waits by reviewing counter 6038 —
WritesTimerPop.

Determine the number of full or partially full blocks that have been written by
reviewing these counters:

e 6002 — BlocksWriten
e 6041 — BlocksFullWrite

If counter 62006 — SleepsWiriteQ isrelatively high compared to counter 62002
— BlocksRead, SQM Readers must too often wait for the next block of
messages to deliver downstream—which causes latency. Decrease the values
of init_sgm_writer_delay and init_sgm_writer_max_delay so that SQM Writer
does not wait to long before writing a partially full block.

Ideally, theratio of counter 62004 — BlocksReadCached to counter 62002 —
BlocksRead should be high, and counter 62006 — SleepsWiriteQ should be
relatively low. Such numbers would indicate that the SQM Writer is working
approximately as fast as the SQM Reader, handing off blocks to one another
without reading from disk. Remember, however, that thisis a Replication
Server—wide parameter—adjusting this parameter to make one queue more
efficient may decrease the efficiency of another.

559

Suggestions for using tuning parameters

Caching system tables

Replication Server configuration parameters: sts_cache_size and
sts_full_cache_table_name

You can fully cache certain system tables so that smple select statements on
those tables do not require access to the RSSD. By defaullt, rs_repobjs and
rs_users are fully cached. Sybase recommends that you cache rs_objects,
rs_columns, and rs_functions. Depending on the number of replication
definitionsand subscriptions used, fully caching these tables may significantly
reduce RSSD access requirements. However, if the number of unique rowsin
rs_objects is approximately equal to the value for sts_cachesize, these tables
may already be fully cached

Table 16-5 lists those tables that can be fully cached.

Table 16-5: System tables that can be cached

Tables

rs_classes rs_columns rs_config rs_datatype
rs_databases rs_diskaffinity rs_functions rs_locater
rs_objects rs_queues rs_repdbs rs_routes
rs_sites rs_systext rs_translation rs_users
rs_repobjs rs_version rs_publications rs_dbreps
rs_dbsubsets

Setting wake up intervals

Replication Server configuration parameters: rec_daemon_sleep_time,
sub_daemon_sleep_time, and stats_daemon_sleep_time

By default, the recovery and subscription daemons wake up every two minutes
to check the RSSD for messages. In atypical production environment, the
subscription daemon is used rarely. As a consequence, you may be able to set
the subscription daemon wake-up interval to the maximum value: 31,536,000
seconds. Similarly, you can evaluate whether you want to set the recovery and
statistics daemon to alonger wake-up interval.

Sizing the SQT cache

560

Replication Server configuration parameter: sqt_max_cache_size

Replication Server

CHAPTER 16 Performance Tuning

Monitor SQT cache usage by reviewing counter 24005 — CacheMemUsed.
Although this counter may indicate that the SQT cache is constantly full,
sqt_max_cache_size may not need to be increased. Rather, monitor counter
24009 — TransRemoved. If TransRemoved remains zero, indicating that
transactions are not being flushed from the cache to make room for others,
sqgt_max_cache_size need not be adjusted.

sqt_max_cache_size appliesto all SQT caches supporting DIST clients, and
provides a default value for SQT caches that support DSI clients. The DISTs
can push through transactions rapidly; their SQT caches do not need to be as
large as SQT cachesfor DSIs. Thus, it is advisable to set SQT cache sizesfor
DSlsindividualy using the connection configuration parameter
dsi_sqt_max_cache_size, and using sqt_max_cache_size for DIST SQT caches
only.

Notethat counter 24010 — CacheExceeded does not provide useful information
about the usage and size of the SQT cache.

Controlling the number of network operations

57037 — SendTimeLast

Database connection configuration parameter: dsi_cmd_batch_size

dsi_cmd_batch_size controlsthe size of aDSI command batch. That is, it
controls the size of the buffer aDSI usesto send commandsto areplicate data
server. When the DSI configuration batch is set on, the DSI places as many
commands as will fit into a single command batch before sending it to the
replicate. In some cases, increasing the value of dsi_cmd_batch_size improves
throughput by reducing the number of network operations.

You can monitor the average size of a batch by referring to counter 57078 —
DSIEBatchSizeAve. You can monitor the average amount of time taken to
process a batch (the time from when the batch is created until it is flushed and
the results processed) by refering to counter 57074 — DSIEBatchTimeAve.

The following counters may also be useful in monitoring the effectiveness of
batching and batch size:

57039 — SendTimeMax 57041 — SendTimeAvg

57063 — DSIEResultTimel ast

57065 — DSIEResultTimeM ax

57067 — DSIEResultTimeAve

57069 — DSIEBatch

57070 — DSIEBatchTimel ast

57072 — DSIEBatchTimeMax

57076 — DSIEBatchSizel ast

57077 — DSIEBatchSizeMax

57079 — DSIEOCmdCountL ast

57080 — DSIEOCmdCountMax

Administration Guide

57081 — DSIEOCmdCountAve

57092 — DSIEBFMaxBytes

561

Suggestions for using tuning parameters

Controlling the number of outstanding bytes

Database connection configuration parameters. exec_sgm_write_request_limit
and md_sgm_write_request_limit

exec_sqgm_write_request_limit controls the maximum number of outstanding
bytes the RepAgent User thread can hold beforeit must wait for some of those
bytes to be written to the inbound queue. Similarly,
md_sqgm_write_request_limit controls the number of outstanding bytes a
Distributor can hold before it must wait for some of those bytes to be written
to the outbound queue.

Monitor the number of times and duration of time the RepAgent Executor
sleeps while waiting for outstanding write requests to compl ete by reviewing
these counters:

* 58018 — RAWriteWaits
¢ 58019 — RAWWriteWaitsTimeAve

If the RepAgent Executor consistently reaches this threashold, review the
StableDevice 1/0.

Controlling the number of commands the RepAgent executor can

process

562

Database connection configuration parameter: exec_cmds_per_timeslice

By default, the value of the exec_cmds_per_timeslice parameter is 5, which
indicates that the RepAgent executor thread can process no more than five
commands before it must yield the CPU to other threads. Depending on your
environment, increasing or decreasi ng these val ues may improve performance.

If the in-bound queue is slow to be processed, try increasing these values to
give the RepAgent executor thread and the distributor thread more time to
perform their work. If, however, the out-bound queueis slow to be processed,
try decreasing these parameter values so that the DSI has more time to work.

If CPU resources are limited with respect to the number of connections
Replication Server supports, increasing the value of exec_cmds_per_timeslice
may result in decreased overall performance. In this case, giving the RepAgent
Executor more control of CPU resources may reduce resources to other
Replication Server threads.

Monitor the number of times and duration of time the RepAgent Executor
yields CPU with these counters:

Replication Server

CHAPTER 16 Performance Tuning

» 58015-RAYields
» 58016 — RAYieldTimeAve

Specifying the number of stable queue segments allocated
Replication Server configuration parameter: sqm_recover_segs

sqm_recover_segs Specifies the number of stable queue segments Replication
Server allocates before updating the RSSD with recovery QID information.

If sqm_recover_segs is set low, more RSSD updates are performed, possibly
slowing performance. If sqm_recover_segs is set high, fewer RSSD updates
are performed, possibly improving performance at the expense of longer
recovery times.

Monitor how often an SQM Writer makes updates to the rs_ogids table by
reviewing counter 6036 — UpdsRsoqid. Typically, increasing the value of
sgm_recover_segs improves performance by reducing the amount of time and
system resources necessary to all ocate segments. However, queue startup and
restart takelonger asthe SQM Writer must scan more of the queueto determine
the last message successfully written for each origin. Each segment requires
1MB of queue space; determine the value of sqm_recover_segs by calculating
the number of megabytes the SQM Writer can afford to scan at startup or
restart. For example, if the SQM Writer can scan 50MB of queue without
slowing Replication Server startup or restart, set sqm_recover_segs to 50.

Selecting disk partitions for stable queues
Database connection configuration parameter: disk_affinity

The Replication Server partition affinity feature (see “ Allocating queue
segments” on page 593) allows you to choose the disk partition to which
Replication Server alocates segments for stable queues. Sybase suggests that
to improve overall throughput you associate faster devices with stable queues
that process more slowly.

Making SMP more effective
Replication Server configuration parameter: smp_enable

Administration Guide 563

Suggestions for using tuning parameters

To determine the number of processors required to make effective use of SMP,
establish a base of two processors plus one more for every four queues.
Processor speed may determine whether these numbers are correct to meet
your performance needs. If you have outbound queues supporting paralel DSI,
and there are more than 12 DSI Executor threads, you may want to increase the
processor/thread ratio for outbound queues—one processor for every three or
even two outbound queues.

Replication Server aways uses afinite number of threads based on the number
of supported connections and routes. Even if al threads are to be kept aways
busy, making more and more processors available to Replication Server will
eventually cause “ CPU saturation”—beyond which more processors will not
increase performance. At that point, any performance issuesyou experience as
aresult of CPU resources may best be addresssed by introducing CPUsrunning
at faster speeds.

Although test results are inconclusive, there is evidence that making too many
processors available to Replication Server can actually decrease performance.
In such cases, the issue seems to be the amount of time taken to force thread
context switches among the available processors. Use your operating system
(OS) monitoring utilities to monitor the OS's management of the Replication
Server process and its threads. These utilities will help you determineif a
reduction in CPUs made availableto Replication Server reduces the number of
such context switches.

Specifying the number of transactions in a group

You can use different configuration parameters to control the number of
transactions in a group.

Database configuration parameter : dsi_max_xacts_in_group

564

dsi_max_xacts_in_group specifies the maximum number of transactionsin a
group. Larger numbers may reduce commit processing at the replicate
database, and thereby improve throughput.

Monitor the average number of transactions placed in agroup per DSI-E thread
by reviewing counter 57049 — TransAvgGroup.

Monitor the average number of transactions per group for the total DSI
connection by reviewing these counters:

¢ 5000 - TransTota

Replication Server

CHAPTER 16 Performance Tuning

e 5002 —NgTransTotal

Use dsi_max_xacts_in_group to control group size. Set dsi_xact_group_size to
the maximum value and do not change it. Contention among parallel
transactions may be reduced by reducing the value of dsi_max_cacts_in_group
to 1, which indicates no grouping.

Monitor why groups are being closed by reviewing these counters:
e 5042 — GroupsClosedBytes

e 5043 — GroupsClosedNoneQrig

e 5044 — GroupsClosedMixedUser

e 5045 — GroupsClosedMixedM ode
¢ 5049 — GroupsClosedTranPartRule
e 5051 — UserRuleMatchGroup

e 5053 - TimeRuleMatchGroup

e 5055 — NameRuleMatchGroup

¢ 5063 — GroupsClosedTrans

e 5068 — GroupsClosedLarge

¢ 5069 — GroupsClosedWSBSpec

e 5070 — GroupsClosedResume

e 5071 — GroupsClosedSpecial

Database configuration parameters: dsi_xact_group_size and
dsi_max_xacts_in_group

Administration Guide

Use these configuration parameters together to increase the number of
transactions that can be grouped as a single transaction for application to the
replicate database. If the average number of commands per transactionissmall
(five or fewer), you can use dsi_xact_group_size and dsi_max_xact_in_group to
improve transaction application time.

Sybase recommends that you set dsi_xact_group_size to the maximum value,
and use dsi_max_xact_in_group to control transaction group size.

565

Using parallel DSI threads

Using parallel DSI threads

You can configure a database connection so that transactions are applied to a
replicate data server using parallel DSI threadsrather than asingle DSI thread.
Applying transactionsin parallel increases the speed of replication, yet

maintains the serial order of the transactions that occurred at the primary site.

When parallel DSI threads are active, Replication Server normally starts
processing atransaction before the preceding transaction has committed and
after the DSI has seen the commit record for the next transaction. The commit
isdelayed until it isdetermined that all preceding transactions have committed.
Replication Server can control the order in which transactions are committed
and detect conflicting updatesin transactionsthat are executing simultaneously
using either of these methods:

* Internaly, using Replication Server internal tables and function strings, or
e Externaly, using th rs_threads system table in the replicate database.

Replication Server can achieve additional parallelism in the way it processes
large transactions with parallel DSI threads. Large transactions begin
processing before the DS| has seen the commit record. Whilethismeansalarge
transaction can be processed sooner, it also means that Replication Server
might start processing a transaction that is ultimately rolled back.

Replication Server provides other options for maximizing parallelism and
minimizing contentions between transactions. For example:

e Transaction serialization methods allow you to choose the degree of
parallelism your system can handle without inducing conflicts.

e Transaction partitioning rules provide additional tuning to affect how
transactions are grouped and distributed.

Benefits and risks

566

For most primary databases, many users and applications can create
transactions simultaneously. Funneling all of these transactionsto thereplicate
through a single connection can create a serious bottleneck. This bottleneck
can cause periods of unwanted latency between the primary and the replicate.

The benefit of enabling parallel DSI within Replication Server isto reduce this
potentia bottleneck by processing multiple transactions across multiple
replicate connections at the same time.

Replication Server

CHAPTER 16 Performance Tuning

Therisk in enabling parallel DSI istheintroduction of contention between the
multiple replicate connections and their transactions. The simultaneous
application of transactions against the replicate may introduce competition
between the transactions for replicate resources, creating a different kind of
bottleneck.

Asaresult, using parallel DSI threads successfully requires an in-depth
knowledge of your replication environment and iterative testing to determine
which of the parallel DSI tuning parameters are most beneficial. The objective
is to provide high throughput while controlling the amount of contention
introduced at the replicate.

For example, consider abody of work that includes 1000 transactionsthat must
be replicated. It will take some time to send all 1000 transactions across a
single replicate connection. However, attempting to configure and use 1000
connections, one for each transaction, will likely result in contentions and
strained server resources. A successful configuration requires a balance
between the two scenarios; it depends on both the transactions profile and the
impact of issuing those transactions against the replicate using parallel DSI.

In asecond example, two serial transactionsissued at the primary each perform
asingle update operation to the same table row. If these two transactions are
attempted in parallel at the replicate by two connections, the first transaction to
access the table row is granted exclusive access. The second transaction must
wait until the first transaction has either committed or rolled back and thus
released the row. Although both transactions are ultimately applied, thereisno
benefit from the parallel DSI configuration. The transactions are processed
serially inthe same way they would have been processed without parallel DSI.
The contention has nullified any benefit from using parallel DSI.

Parallel DSI parameters

You can customizethe parallel DSI thread environment using the configuration
parameters shown in Table 16-6. Use these configuration parameterswith alter
connection to tune parallel DSI threads for individual connections.

Table 16-6: Parallel DSI configuration parameters

Configuration parameter Description

dsi_commit_check_locks_intrvl | The number of milliseconds (ms) the DSI executor thread waits between

Administration Guide

executions of the rs_dsi_check_thread_lock function string.
Default: 1000 ms (1 second)

Minimum: 0

Maximum: 86,400,000 ms (24 hours)

567

Using parallel DSI threads

Configuration parameter

Description

dsi_commit_check_locks_log

The number of times the DS executor thread executes the
rs_dsi_check_thread_lock function string before logging a warning message.

Default: 200
Minimum: 1
Maximum: 1,000,000

dsi_commit_check_locks_max

The maximum number of times the DSI executor thread executes the
rs_dsi_check_thread_lock function string before rolling back and retrying a
transaction.

Default: 400

Minimum: 1

Maximum: 1,000,000

dsi_commit_control

Specifies whether commit control processing is handled internally by
Replication Server using internal tables (on) or externally using the rs_threads
system table (off).

Default: on

dsi_ignore_underscore_names

When the dsi_partitioning_rule is set to “name,” specifies whether or not
Replication Server ignores transaction names that begin with an underscore.
Values are“on” and “ off.”

Default: on

dsi_large_xact_size

The number of statements allowed in atransaction before it is considered to be
alarge transaction.

Default: 100
Minimum: 4

dsi_num_large_xact_threads

Thenumber of parallel DSI threadsto be reserved for usewith largetransactions.
The maximum value is one less than the value of dsi_num_threads.

Default: 0

dsi_num_threads

The number of parallel DSI threads to be used for a connection. A value of 1
disablesthe parallel DSI feature.

Default: 1

Minimum: 1

Maximum: 255

dsi_partitioning_rule

568

Specifies the partitioning rules (one or more) the DSI uses to partition
transactions among available parallel DS threads. Values are origin,
origin_sessid, time, user, name, and none. See “Partitioning rules. reducing
contention and increasing parallelism” on page 576 for detailed information.

Default: none

Replication Server

CHAPTER 16 Performance Tuning

Configuration parameter

Description

dsi_serialization_method

Specifies the method used to maintain serial consistency between parallel DS
threads when applying transactions to a replicate data server.

* no_wait — specifiesthat atransaction can start as soon asit is ready—without
regard to the state of other transactions.

 wait_for_start —specifiesthat atransaction can start as soon asthe transaction
scheduled to commit immediately before it has started.

* isolation_level_3— specifies that atransaction can start as soon asthe
transaction scheduled to commit immediately before it has started, and that
transaction isolation level 3 locking be used in the replicate data server.

 wait_for_commit—specifiesthat atransaction cannot start until the transaction
scheduled to commit immediately preceding it is ready to commit.

* none —same aswait_for_start. Retained for backward compatibility.

* single_transaction_per_origin — same as wait_for_start with
dsi_partitioning_rule set to origin. Retained for backward compatibility.

Default: wait_for_commit

dsi_sqt_max_cache_size

The maximum SQT cache size for the database connection. The default, 0,
means the current setting of the sqt_max_cache_size parameter is used asthe
maximum cache size for the connection.

Default: 0

parallel_dsi

A shorthand method for configuring parallel DSI to default values. A value of
“on” setsdsi_num_threads to 5, dsi_num_large_xact_threads to 2,
dsi_serialization_method to wait_for_commit, and dsi_sqt_max_cache_size to 1
million bytes. A value of “off” setsthe parallel DSI valuesto their defaults. You
can set this parameter to “on” and then set individual parallel DSI configuration
parameters to fine-tune your configuration.

Default: off

To configure a connection for parallel DS, set the parallel_dsi parameter to on
and then set individual parallel DSI configuration parametersto fine-tune your
environment.

For example, to enable parallel DSI for the connection to the pubs2 database
onthe SYDNEY DS data server, enter:

alter connection to SYDNEY DS.pubs2

set parallel_dsi to 'on'

See “Configuring parallel DSI for optimal performance” on page 587 for
guidelines on configuring the parameters.

Administration Guide

569

Using parallel DSI threads

Components of parallel DSI
Figure 16-3 shows the components of parallel DSI.

Figure 16-3: Parallel DSI components

Replicate /
Replication Server \
GOy

| —P

Outbound
stable @
queue @
Replicate
K data server

DSl scheduler thread

The DSI scheduler thread (shown as DSI-Sin Figure 16-3) collects small
transactions into groups by commit order. Once transactions are grouped, the
DSl scheduler dispatches the groupsto the next available DSI executor thread.
The DSI scheduler attemptsto dispatch groupsfor different originsin parallel,
because they can commit in parallel.

Transaction partitioning rules allow you to specify additional criteriathe DSI
scheduler can use to group transactions. See “ Partitioning rules: reducing
contention and increasing parallelism” on page 576.

DSI executor threads

The DSI executor threads (shown as DSI-E in Figure 16-3) map functions to
function strings and execute the transactions on the replicate database. The DSI
executor threads al so take action on any errorsthe replicate data server returns.

Processing transactions with parallel DSI threads

You can define large and small transactions with the dsi_large_xact_size
database connection configuration parameter. dsi_large xact_sizespecifiesthe
number of commands allowed in atransaction before the transaction is
considered to be large. Replication Server normally processes small and large
transactions differently.

570 Replication Server

CHAPTER 16 Performance Tuning

Small transactions

Replication Server attempts to group similar transactions to process them as
one, larger transaction. In this way, Replication Server can issue one commit
for the group rather than committing each individua transaction. A group of
transactions is complete and sent to the next available DSI executor thread
when one of several criteriais met. For example:

e The next transaction has been issued from a different origin.

» The number of transactionsin the group exceeds the value specified by
dsi_max_xacts_in_group.

» Thetota size, in bytes, of the transactionsin the group exceeds the value
specified by dsi_xact_group_size.

» The next transaction is alarge transaction, which is always grouped by
itself.

* A transaction partitioning rule determines that the next transaction cannot
be grouped with the existing group.

e A timeout expires.

Once agroup is complete, it can be sent to the next available DS| executor
thread. Only committed transactions can be added to agroup. That is,
transactions are not added to the small transaction group until their commit
record isread.

Large transactions

Large transactions are submitted to the next available DSI executor thread that
isreserved for alarge transaction. The DSI executor thread sends the
transaction to the replicate data server without waiting to see the commit
record. If the transaction was rolled back at the primary data server, the DS
executor thread rolls it back at the replicate data server.

If Replication Server encounters alarge transaction, and a dedicated large
transaction thread isnot availabl e, the transaction is processed i n the same way
asagroup of small transactions.

Administration Guide 571

Using parallel DSI threads

Transaction serialization methods

572

Replication Server maintains transaction serialization in parallel DSI by
committing transactions at the replicate database in the same order in which
they were committed at the primary database. When using more than one DS
thread to process transactions, Replication Server can execute operationsin a
different order at the replicate database aslong as the order of processing does
not result in conflicting updates. The commit order at the primary and replicate
databases always matches; the execution or processing order at the replicate
database may or may not match.

Replication Server provides four different serialization methods for
minimizing update conflicts. The serialization method you choose depends on
the amount of contention you expect between parallel threads and your
replication environment. Each serialization method defines how much of a
transaction can start before it must wait for the previous transaction to commit.

The serialization methods are:

* no_wait

e wait_for_start Or none

e wait_for_commit

e single_transaction_per_origin

Use the alter connection command with the dsi_serialization_method parameter
to select the serialization method for adatabase connection. For example, enter
the following command to select the wait_for_commit serialization method for
the connection to the pubs2 database on the SYDNEY _DS data server:

alter connection to SYDNEY DS.pubs2
set dsi _serialization method to 'wait for commit'

Note Non-Sybase data servers may not support the functionality of the
isolation_level_3 method. However, you can ater its associated function string,
rs_set_isolation_level3, to accommodate the non-Sybase data server.

We can describe a transaction as containing three parts:
e Thebeginning

¢ Thebody of thetransaction, consisting of operations such asinsert, update,
or delete

¢ Theend of the transaction, consisting or acommit or arollback

Replication Server

CHAPTER 16 Performance Tuning

no_wait

Time

While providing commit consistency, the serialization method defineswhether
the beginning of the transaction waits for the previous transaction to become
ready to commit or if the beginning of the transaction can be processed as soon
aspossible.

This method instructs the DS to initiate the next transaction without waiting
for the previous transaction to commit. It assumes that your application is
designed to avoid conflicting updates, or that dsi_partitioning_rule is used
effectively to reduce or eliminate contention. Adaptive Server does not hold
update locks unless transaction isolation level 3 has been set. The method
assumes little contention between parallel transactions and resultsin the nearly
parallel execution shown in Figure 16-5.

Figure 16-4: Thread timing with the no_wait serialization method

Transaction A

Body End

Transaction B

Body End

Transaction C

Body End

wait_for_start

Administration Guide

|

no_wait provides the better opportunity for increased performance, but also
provides the greater risk of creating contentions.

Note For clarity, the wait_for_start option replaces the none optionin
Replication Server 12.6. none is retained for backward compatibility.

wait_for_start specifies that a transaction can start as soon as the transaction
scheduled to commit immediately before it has started.

573

Using parallel DSI threads

wait_for_commit

When wait_for_start is used along with the origin partitioning parameter,
transactions from each origin are sent to separate DSI executor threads. This
method assumes that multiple origins updating the same replicate have built-in
contention control, so they can be safely applied in parallel to the replicate.

In this method, the next thread’s transaction group is not sent for processing
until the previous transaction has processed successfully and the commit is
being sent. Thisis the default setting. It assumes considerable contention
between parallel transactions and results in the staggered execution shown in
Figure 16-5.

Figure 16-5: Thread timing with wait_for_commit serialization method

Transaction A

Body End

Time

Transaction B

Body End

Transaction C
Body End

isolation_level 3

574

-

This method maintains transaction serialization by instructing the DSI to wait
until atransaction isready to commit beforeinitiating the next transaction. The
next transaction can be submitted to the replicate data server while the first
transaction is committing, since the first transaction aready holds the locks
that it requires.

wait_for_commit, because it provides minimal parallelism, cannot deliver the
most improved performance. However, it also has less likelihood of creating
contentions.

This method is identical to wait_for_start except that it specifies transaction
isolation level 3 for the DSI /E session in the replicate database. This type of
locking prevents “non-repeatable reads” and “phantoms” from occurring by
applying an index page or table lock until the end of the transaction.

Replication Server

CHAPTER 16 Performance Tuning

Select this seriaization method if you are using triggers to enforce referential
integrity of dataacross adatabase. It prevents phantom rows from occurringin
atable while atrigger is being executed.

Replication Server usesthers_set_isolation_level_3 system function to turn on
transaction isolation_level_3. This system function is executed every time the
DSI connects to the replicate data server.

Use this method only when wait_for_start does not introduce inordinate
contention and the replciated transaction must performa a repeatable read, or
the replicate database is using row-level locking.

Note Replication Server automatically creates afunction string for the
rs_set_isolation_level3 function in function-string classesin which Replication
Server generates default function strings. For other function-string classes, you
must create rs_set_isolation_level3 function strings before you can use the
parallel DSl feature.

single_transaction_per_origin

Administration Guide

Thismethod attempts to send the transactions from each origin to separate DSI
executor threads. It assumes that multiple origins updating the same replicate
have built-in contention control, so they can be safely applied in parallel to the
replicate.

Note With Replication Server 12.6, the functionality of
single_transaction_per_origin is duplicated by selecting the wait_for_start
serialization method and the origin partitioning rule.
single_transaction_per_origin hasbeen retained for backward compatibility. See
“wait_for_start” on page 573.

575

Using parallel DSI threads

Partitioning rules: reducing contention and increasing parallelism

Another paralel DSI tuning parameter is dsi_partitioning_rule. Partitioning
rules set using dsi_partitioning_rule alow the parallel DSI feature to make
decisions about transaction groups and parallel execution based on transactions
having common names, users, overlapping begin/commit times, or a
combination of these. Partitioning rules allow the parallel DSI feature to more
closely mimic processing order at the primary.

Each of the parallel DSI parameters provides a method for fine-tuning the
feature based on conditions at your installation. dsi_num_threads controls the
number of DSI threads available for a connection. dsi_serialization_method
controls the amount of parallelism for the connection, but must balance
increased parallelism with the potential for contentions at the replicate.
dsi_partitioning_rule provides amethod for reducing contentions without
reducing the overall capabilities of the parallel DSI feature.

Using transaction-partitioning rules

576

Replication Server allows you to partition transactions for each connection
according to one or more of these attributes:

e Origin

e Originand session ID

e None, in which no partitioning ruleis applied
e User name

e Origin begin and commit times

* Transaction name

Note If partitioning rules are to be used to improve performance,
dsi_serialization_method must not be wait_for_commit. wait_for_commit
removes contention by reducing parallelism.

To select partition rules, use the alter connection command with the
dsi_partitioning_rule option. The syntax is:

alter connection to data_server.database
set dsi_partitioning_rule to ‘{ none|rule[, rule]}

Valuesfor rule are user, time, origin, origin_sessid, and name.

Replication Server

CHAPTER 16 Performance Tuning

Partitioning rule: origin

For example, to partition transactions according to user name and origin begin
and commit times, enter:

alter connection to TOKYO_ DS.pubs2
set dsi partitioning rule to ‘user,time’

origin causes transactions from the same origin to be serialized when applied to
the replicate database .

Partitioning rule: origin and process ID

Partitioning rule: none

origin_sessid causestransactionswith the sameorigin and the same process|D
to be serialized when applied to the replicate database. Sybase recommends
that when first trying partitioning rules start with a setting of

origin_sessid, time.

Note The process|D for Application Server isthe Session Process ID (SPID).

none is the default behavior, in which the DSI scheduler assigns each
transaction group or large transaction to the next available parallel DSI thread.

Paritioning rule: user name

Administration Guide

If you choose to partition transactions according to user name, transactions
entered by the same primary database user ID are processed serially. Only
transactions entered by different user IDs are processed in parallel.

Use of this partitioning rule avoids contentions, but may in some cases cause
unnecessary loss of parallelism. For example, consider aDBA whoisrunning
multiple batch jobs. If the DBA submits each batch job using the same user 1D,
Replication Server processes each one serialy.

The user name partitioning rule is most useful if each user connection at the
primary hasauniqueD. Itislessuseful if multiple userslog on using the same
ID, suchas“sa.”

577

Using parallel DSI threads

Partitioning rule: origin begin and commit times
If the time partitioning ruleis used, the DSI scheduler looks at the origin begin
and commit times of transactions to determine which transactions could not
have been executed by the same process at the primary database. A transaction
whose origin begin timeis earlier than the commit time of the preceding
transaction can be processed by a different DSI executor thread.

Supposethe origin begin and commit times partitioning rule has been selected,
and thetransactionsand processing timesshownin Figure 16-6 areall fromthe
same primary database.

Figure 16-6: Transaction origin begin and commit times

A
B
I
C
|
D
. |
Time
i i i i i i i —»
T1 T2 T3 T4 T5 T6 T7 T8
Executor thread X Executor thread Y
A C
B
D

578 Replication Server

CHAPTER 16 Performance Tuning

In this example, the DSI scheduler givestransaction A to DSI executor thread
X. The scheduler then compares the begin time of transaction B and the
commit time of transaction A. Astransaction A has committed before
transaction B begins, the scheduler gives transaction B to executor thread X.
That is, transactions A and B may be grouped together and may be processed
by the same DSI executor thread. Transaction C, however, begins before
transaction B commits. Therefore, the scheduler assumes that transactions B
and C were applied by different processes at the primary, and givestransaction
C toexecutor thread Y. Transactions B and C are not allowed in the same group
and may be processed by different DSI executor threads. Because transaction
D begins before transaction C commits, the scheduler can safely give
transaction D to executor thread X.

Note Use of the origin begin and commit times partitioning rule may lead to
contentionswhen large transactions are processed, asthey are scheduled before
the commits are seen.

Partitioning rule: transaction name

Default transaction
names

Administration Guide

The DSI scheduler can use transactions names to group transactions for serial
processing. When creating a transaction on Adaptive Server, you can use the
begin transaction command to assign a transaction name.

If the transaction name partitioning rule is applied, the DSI scheduler assigns
transactionswith the same name to the same executor thread. Transactionswith
different transaction names are processed in parallel. Transactions with a null
or blank name are ignored by the name parameter. Their processing is
determined by other DSI parallel processing parameters or the availability of
other executor threads.

Note This partitioning ruleisavailableto non-Sybase data serversonly if they
support transaction names.

By default, Adaptive Server always assigns a name to each transaction. If a
name has not been assigned explicitly using begin transaction, Adaptive Server
assigns a name that begins with the underscore character and includes
additional characters that describe the transaction. For example, Adaptive
Server assigns a single insert command the default name “_ins.”

579

Using parallel DSI threads

Use the dsi_ignore_underscore_name option with alter connection to specify
whether or not Replication Server ignores these names when partitioning
transactions based on transaction name. By default,
dsi_ignore_underscore_name ison, and Replication Server treats transactions
with names that begin with an underscorein the same way it treats transactions
with null names.

Using multiple transaction rules

You can set multiple transaction rules for a single connection. For example,
applying both origin session ID and origin begin and commit times best
approximates the processing environment at the primary database.

When more than one transaction rule is specified, Replication Server applies
the rulesin the order in which they are entered in the alter connection set
dsi_partitioning_rule syntax.

For example, if dsi_partitioning_rule is set to “time, user,” Replication Server
checks origin begin and commit times before checking user ID. If no conflict
existsfor origin begin and commit times, Replication Server checksuser ID. If
thereis aconflict involving begin and commit times, Replication Server
appliesthe time rule without checking the user ID. Thus, two transactions will
be assigned to different parallel DSI threadsif the origin begin time of the later
transaction is earlier than the commit time—even if both transactions have the
same user |D.

Grouping logic and transaction partitioning rules

580

Partitioning rules can affect grouping aswel | as scheduling decisions. When no
partitioning rule is applied, agroup is complete when, for example, the
maximum size for agroup is reached or alarge transaction is encountered.

If a partitioning rule determines that two transactions occurred at overlapping
times (time rule), have different transaction names (name rule), or are from
different users (user rule), the two transactions are not allowed in the same
group. Otherwise, normal group-size decisions are applied, based on
transaction size, origin, and so forth. See“ Small transactions’ on page 571.

Replication Server

CHAPTER 16 Performance Tuning

Resolving conflicting updates

Administration Guide

Parallel DSI processing must duplicate the commit order of transactions at the
primary database yet allow transaction updates to process simultaneously. It
must then resolve any transaction contentions that occur as aresult. Critical
transaction contentions—or contention deadlocks—can occur when a
transaction cannot commit because it must wait for an earlier transaction to
commit, and the earlier transaction cannot commit because needed resources
are locked by the later transaction.

For example, DSI threads A and B are processing transactions in parallel.
Thread A’s transaction must commit before thread B’s transaction. Thread B’s
transaction locks resources needed by thread A. Thread B’ s transaction cannot
commit until thread A’ stransaction commits, and thread A’ s transaction cannot
commit because needed resources are locked by thread B.

Replication Server provides two methods for resolving deadl ocks:
« Internaly, using Replication Server internal tables and function strings, or
« Externdly, using the rs_threads system table in the replicate database.

The internal method is handled primarily within Replication Server, and uses
thers_dsi_check_thread_lock function string for deadlock detection. The
external method requires both Replication Server and the replicate database,
and uses thers_threads system table for both commit order validation and
deadlock detection.

Sybase recommends the internal method, which isthe default, for both Sybase
and non-Sybase data servers. This method requires less network 1/0 than the
external method, and, if a deadlock occurs, may require the rollback of only a
single transaction. The external method requires more network 1/0 and results
in the rollback of several transactions. The external method is included for
compatibility with previous versions of Replication Server.

If Replication Server encounters commit contention and dsi_commit_control is
“on,” Replication Server rolls back and retries one transaction. If, however,
Replication Server encounterstransaction contention and dsi_commit_control is
“on,” Replication rolls back retries all transactions serialy. If
dsi_commit_control is “ off,” Replication Server rolls back and retries all
transactions serially for either type of contention.

To select amethod, enter the alter connection command with the
dsi_commit_control option. For example, to choose the internal method for the
pubs2 database on the TOKY O_DS data server, enter:

alter connection to TOKYO_DS.pubs2
set dsi commit control to ‘on’

581

Using parallel DSI threads

Setting dsi_commit_control to “on” specifies the internal method; setting
dsi_commit_control to “ off” specifies the external method.

Resolving conflicts internally using the rs_dsi_check_thread_lock function
string

To resolve conflicting updates, Replication Server must maintain transaction
commit order and resolve commit consistency deadlocks. Figure 16-7
describes the logic Replication Server uses to resolve conflicts using the
rs_dsi_check_thread_lock function string.

582 Replication Server

CHAPTER 16 Performance Tuning

Figure 16-7: Conflict resolution logic using the
rs_dsi_check_thread_lock function string

@ Primary data server

Transaction path

K Replication Server

_

p-| Process

Y

Is transaction next
to commit?

— Wait

©
|

S

Has dsi_commit_check_
locks_intrvl time elapsed?

Commit

Y

Is rs_dsi_check_thread lock > 0? —V‘

Rollback

Has dsi_commit_check_
locks_max been reached?

Y

Yes

Administration Guide

583

Using parallel DSI threads

Maintaining commit
order

Resolving commit
consistency deadlocks

584

Note Theinternal method assumes that Replication Server detects and
resolves conflicting updates within Replication Server. If adeadlock is
detected by the replicate database, the replicate chooses a transaction to roll
back. To guarantee commit order, Replication Server must roll back all
transactions currently executing against the replicate database. Replication
Server then reapplies the transactions serialy.

Replication Server reads the commit information sent from the primary
database and uses this information to define and maintain the transaction
commit order at the replicate database.

If aDSI executor thread’ stransaction processing iscomplete and it is expected
to be the “next” transaction to commit, it is allowed to do so. If athread’s
transaction processing iscomplete and it isnot the “next” transaction expected
to commit, the thread must await its turn to commit.

If athread’ stransaction processing iscomplete and it is not the next transaction
expected to commit, it could be holding resources required by an earlier
transaction. After waiting the amount of time specified in the
dsi_commit_check_locks_intrvl parameter, a DSI executor thread executes the
rs_dsi_commit_check_thread_lock function string to determineif the thread
holds alock on resources needed by an earlier transaction:

e If thethread is blocking another transaction (rs_dsi_check_thread_lock >
0), the current transaction rolls back, which resolves the deadlock and
alows the earlier transaction to commit. Only the blocking transaction
rolls back; other transactions process normally.

e If thethread is not blocking another transaction, it checksto seeif it has
executed rs_dsi_check_thread_lock more times than is defined by the
dsi_commit_check_locks_max parameter.

¢ |f thethread has not executed rs_dsi_check_thread_lock more times
than is defined in dsi_commit_check_locks_max, the transaction
commitsif itisnext, or it waits again the amount of time specifiedin
dsi_commit_check_locks_intrvl.

¢ |f thethread has executed rs_dsi_check_thread_lock more times than
isdefined in dsi_commit_check_locks_max, the current transaction
rolls back.

Replication Server

CHAPTER 16 Performance Tuning

Function strings for internal commit control

Replication Server usesthe rs_dsi_check_thread_lock function to check
whether the current DSI executor thread is blocking another replicate database
process. This function has function-string-class scope. It is called only if the
DSl executor thread is ready to commit but cannot because it is not next to
commit, and the amount of time specified for dsi_commit_check_locks_intrvl

has el apsed.
Table 16-7: System functions that support internal commit control
Function Description
rs_dsi_check_thread_lock Determineswhether or not the DSI executor thread isholding alock that blocks

areplicate database process. A return value greater than 0 indicates that the
thread is holding resources required by another database process, and that the
thread should roll back and retry the transaction.

Note Replication Server automatically creates function strings for the above
function in function-string classes in which Replication Server generates
default function strings. For other function-string classes, you must create
these function strings before you can use parallel DSI features with
dsi_commit_control set on.

Using rs_threads to resolve conflicts externally

Thers_threads tableislocated in the replicate database. It contains arow for
each DS| executor thread. To simulate row-level locking, it has two columns,
id and seq, and enough dummy columns so that only one row fits on a page.
Theid column is used as a unique clustered index.

At the beginning of atransaction, the DSI executor thread updatesits row in
thers_threads table with the next available sequence number. When it isready
to commit the transaction, the thread sends a select statement to the replicate
data server to select, from thers_threads table, the sequence number of the
transaction that should have committed prior to the transaction.

Because the preceding transaction holds alock on thisrow inrs_threads, this
thread is blocked until the preceding transaction commits.

Administration Guide 585

Using parallel DSI threads

Handling deadlocks

If the sequence number that is returned is less than the expected value, the

thread determines whether it should roll back the transaction or retry the select
operation. Because the DSI formats many commandsinto a single batch before
submitting it to the Adaptive Server, athread may be ready to commit before
the preceding transaction has submitted any commandsto the Adaptive Server.
In this case, the select in the rs_threads table may be submitted several times.

If the sequence number that is returned matches the expected value, the
transaction can commit.

If atransaction isready to commit, but cannot because it is not next in proper
commit order, and thistransaction isholding locks on resourcesthat are needed
by atransaction that must commit before this one, a deadly embrace occurs at
the replicate database. The deadly embrace consists of the lock on rs_threads
held by the next transaction in commit order, and the locks held on resources
needed by that transaction. The deadly embrace is detected by the replicate
database, which chooses a transaction to roll back. Since Replication Server
must guarantee commit order, when this rollback is forced by the replicate
database, Replication Server rolls back all transactions executing against the
replicate database and reapplies them serialy in commit order.

Function strings for commit control using rs_threads

Replication Server manipulates the rs_threads system table with the system
functions listed below. These functions have function-string-class scope. They
are executed only when more than one DS thread is defined for a connection.

Table 16-8: System functions that modify the rs_threads system table

Function

Description

rs_initialize_threads

Setsthe sequence of each entry inthers_threads systemtableto 0. Thisfunction
is executed during the initialization of aconnection.

rs_update_threads

Updates the sequence number for the specified entry in the rs_threads system
table.

rs_get_thread_seq

Returns the current sequence number for the specified entry in thers_threads
system table.

rs_get_thread_seq_noholdlock Returns the current sequence number for the specified entry in thers_threads

system table, using the noholdlock option. This thread is used when the
serialization method isisolation level 3.

586

Replication Server

CHAPTER 16 Performance Tuning

Note The function strings described in Table 16-8 are needed only when the
external, rs_threads method is used for commit control.

Configuring parallel DSI for optimal performance

Before you begin

Administration Guide

The following guidelines can help you configure parallel DSI to achieve
optimal performance. The objective isto tune parallel DS| processing to
provide the best replication performance, balancing parallel processing with
acceptable levels of contention. Contentions will always occur. The only way
to eliminate contentions is to turn off parallel DSI processing. At the same
time, setting al parallel DS parameters for maximum parallelism may cause
Replication Server to spend more time recovering from contentions than
actually applying transactions to the replicate. Optimal performanceis
achieved through a clear understanding of your operating environment so that
you can successfully balance parallel processing with acceptable contention
levels.

Before you begin tuning for performance:

¢ Understand your transaction profile. What kinds of transactions are being
replicated? Do these transactions affect the same rows and tables? Are
these transactionsliableto conflict if appliedin parallel ?Isthetransaction
profile constant, or doesit change, perhaps with the time of day or month.
A clear understanding of your transaction profile helps you select those
parameters and settings that will be most useful.

« Tunethereplicate database to handle contentions. Most primary
databases have been tuned to minimize contentions through the use of
clustered indexes, partitioning, row-level locking, and so on. Make sure
that your replicate database has been tuned similarly.

« Define a set of repeatable transactions that accurately reflect your
replication environment. Tuning your parallel DSI environment isan
iterative process. You will need to set parameters, run atest, measure
performance, compare against previous measurements, and repeat until
you have maximized your results.

587

Using parallel DSI threads

Reducing contention

588

e First, reset the dsi_serialization_method parameter. Set the
dsi_serialization_method parameter to no_wait to enable maximum
parallelism. Then attempt to reduce contentions by testing other
parameters. Because the wait_for_commit (the default) setting supplies
minimal parallelism and therefore minimal benefit, only reset
dsi_serialization_method to wait_for_commit after all attempts to reduce
contention using the no_wait setting have failed to increase performance.

e Setthedsi_num threads parameter correctly. The dsi_num_threads
parameter defines the total number of DSI executor threads; the
dsi_num_large_xact_threads parameter defines the total number of DS
executor threads reserved for large transactions. Thus, the total number of
DSI executor threads (dsi_num_threads) equalsthe number of DSI threads
reserved for large transactions plus the number of threads available for
small transactions. Make sure that dsi_num_threads is greater than the
default, and that the value for dsi_num_threads is greater than that for
dsi_num_large_xact_threads.

Start tuning parallel DSI parameters to reduce contention when you have
completed the tasks described in “Before you begin” on page 587 and
performance tests indicate that contentions are affecting performance. For
example:

e Thereplicateislocking activity.

¢ Replication Server isrolling back and reapplying alarge percentage of
transactions due to deadlock conditions.

Start by tuning the dsi_max_xacts_in_group parameter, which determines the
number of transactions grouped in a single begin/commit block. By reducing
the value of dsi_max_xacts_in_group, you cause the DSI executor threadsto
commit more frequently. Thus, the DSI executor threads hold fewer replicate
resources for shorter periods of time and contentions should decrease.

Adjusting the dsi_num_threads parameter also affects contention. The larger
the number of DSI executor threads available, the more likely contentionswill
arise among the threads. Try decreasing the value of dsi_num_threads even to
3 with onereserved for large transactions. Finding the values that provide best
performance is iterative. Remember that some contention is acceptable if
overal performanceimproves.

Replication Server

CHAPTER 16 Performance Tuning

Using partitioning rules

Partitioning rules can al so reduce contention, but require a clear understanding
of your transaction profile.

The transaction name rule

The user name rule

Do transactions have transaction names? | s the contention caused by
transactions with the same name? Try setting the transaction name rule, which
forces transactions with the same name to be sent to the replicate one-by-one.

If transactions are not named, you could change the application so that names
are added. Then use the name rule to serialize only specified transactions.
Suppose a particular type of large transaction always causes problemsif the
DSI executor threads attempt to process two or morein parallel. By giving the
problem transactions the same name, and applying the name rule, you can
ensure that the problem transactions are processed serially. Remember,
however, that the name rule is applied to al transactions, and al transactions
with the same name will be processed serially.

Setting the user name rule may help reduce contentions caused by transactions
processed in parallel from thesame user ID. Likethetransaction namerule, the
user namerule, if set, isapplied to al transactions, and every transaction from
the same user ID will be processed serially.

The origin begin and commit times rule

Thetime rule forces seria execution of transactions with nonoverlapping
commit/begin times. That is, if the commit time of the first transaction comes
before the begin time of the next transaction, these two transactions must
execute serialy.

Combining partition rules

Administration Guide

You can combinerules. Thefirst ruleto be satisfied takes precedence. Thus, if,
for example, the origin_sessid, time rule is specified, two transactions with the
same origin session ID will be forced to run serially, and the time ruleis not

applied.

589

Using parallel DSI threads

Frequent conflicting updates

If your transactions conflict with each other frequently, set the parallel DSI
configuration parameters as follows:

dsi_serialization_method — set this parameter to wait_for_commit.

dsi_num_large_xact_threads — set this parameter to 2. If you are
configuring parallel DS in awarm standby application, set the
dsi_num_larg_xact_threads parameter for the standby database to one
more than the number of simultaneous large transactions executed at the
active database.

dsi_num_threads — set this parameter to 3 plusthe value of the
dsi_num_large_xact_threads parameter. If your transactions are usualy
small, such as one or two statements, set dsi_num_threads to 1 plus the
value of dsi_num_large_xact_threads.

Setting the parallel_dsi configuration parameter on provides a shorthand
method for configuring parallel DSI as described above. It also sets the
dsi_sqt_max_cache_size parameter to 1 million bytes.

Infrequent conflicting updates

If your transactions conflict with each other only occasionally, set the parallel
DSI configuration parameters as follows:

dsi_serialization_method —set this parameter toisolation level 3if you have
Adaptive Server or SQL Server version 10.0.x or later.

dsi_num_large_xact_threads — set this parameter to 2. If you are
configuring paralel DSI in awarm standby application, set the
dsi_num_larg_xact_threads parameter for the standby database to one
more than the number of simultaneous |arge transactions executed at the
active database.

dsi_num_threads — set this parameter to 3 plus the value of the
dsi_num_large_xact_threads parameter.

Transaction size and SQT cache

590

The sqt_max_cache_size configuration parameter determines the maximum
SQT cache memory, in bytes. You set its value based on the number of
transactions you are processing and the number of statements within the
transactions.

Replication Server

CHAPTER 16 Performance Tuning

The following formula gives the upper bound, or worst case, estimate for SQT
cachesize. A good default valuefor the SQT cachewhen you are using parallel
DSl is2MB.

The SQT cache formulais:
sqt_max_cache size=T* (O+(S* N))
The factors included in the formula are as follows:

¢ Tisthe number of transactionsto cache for aDSlI. It should be 1 plus the
number of ordinary DSI threads, multiplied by 20:

20* (1+dsi_num threads- dsi_num large xact_threads)

¢ Oisthe SQT cache's per transaction overhead, including the begin and
commit statements. Thisis 3K bytes.

e Sisthestatement sizewithinthe SQT cache. Thisis 1K when the modified
dataislessthan 100 bytes, 2K when the modified datais between 100 and
300 bytes, and 5K when the modified data is greater than 300 bytes.

¢ Nisthe number of statements modified by atransaction. It is determined
by the application.

When asteady stream of transactionsisflowing to the DSI, the SQT should be
full and the number of closed transactions should be about 20. More closed
transactionsindicatesthat the cacheislarger than required, and fewer indicates
that the cache is not large enough.

Number of statements and SQT cache

Thedsi_large_xact_size parameter setting should be larger than the number of
statements modified by an ordinary transaction and larger than the number
given by theformulabelow. If the number bel ow is smaller than the number of
statements in an ordinary transaction, the sqt_max_cache_size parameter
should be increased. The formulais:

dsi_large xact size=
((sgt_max_cache size/ dsi_num large xact_threads) - O) / S

Parallel DSI and the rs_origin_commit_time system variable

Thevalue of thers_origin_commit_time system variable depends on whether
you are using the parallel DSI feature.

Administration Guide 591

Using multiprocessor platforms

e If youarenot using paralel DSI to process large transactions, the val ue of
rs_origin_commit_time contains the time when the last transaction in the
transaction group committed at the primary site.

e If youareusing paralel DSI to process large transactions (before their
commit has been read from the DSI queue), when the DSI threads start
processing one of these transactions, the value of rs_origin_commit_time
is set to the value of rs_origin_begin_time.

When the commit statement for the transaction is read, the value of
rs_origin_commit_timeis set to the actual commit time. Therefore, when
the configuration parameter dsi_num_large_xact_threads is set to avalue
greater than zero, the value for rs_origin_commit_timeis not reliable for
any system function other than rs_commit.

Using multiprocessor platforms

592

You can run Replication Server on symmetric multiprocessor (SMP) or single-
processor platforms. Replication Server’s multithreaded architecture supports
both hardware configurations. On a single processor platform, Replication
Server’s threads run serially. On a multiprocessor platform, Replication
Server’sthreads can runin parallel, thereby improving performance and
efficiency.

Replication Server isan Open Server application. Replication Server support
for multiple processors is based on Open Server support for multiple
processors. Both servers use the POSI X thread library on UNIX platforms and
the WIN32 thread library on Windows platforms. For detailed information
about Open Server support for multiple processing machines, see the Open
Server Server-Library/C Reference Manual.

When Replication Server isin single-processor mode, a server-wide mutual
exclusion lock (mutex) enforces seria thread execution. Serial thread
execution safeguards global data, server code, and system routines, ensuring
that they remain thread-safe.

When Replication Server isin multiprocessor mode, the server-wide mutex is
disengaged and individual threads use a combination of thread management
techniques to ensure that global data, server code, and system routines remain
secure.

Replication Server

CHAPTER 16 Performance Tuning

Enabling multiprocessor support

To specify whether Replication Server takes advantage of a multiprocessor
machine, use with the smp_enable option. For example:

configure replication server set smp enable to 'on'

Setting smp_enable to “on” specifies multiprocessor support; setting
smp_enable to “off” specifies single-processor support. The default is “off.”

smp_enable isastatic option. You must restart Replication Server after
changing the status of smp_enable.

Monitoring thread status
You can verify Replication Server thread status using these commands:
* admin who — provides information on all Replication Server threads

e admin who_is_up or admin who_is_down — lists Replication Server threads
that are running, or not running.

e sp_help_rep_agent —providesinformation on the RepAgent thread and the
RepAgent User thread.

See Chapter 13, “Verifying and Monitoring Replication Server” for more
information about monitoring thread status.

Monitoring performance

Replication Server provides monitors and counters for monitoring
performance. See Chapter 15, “Using Counters to Monitor Performance,” in
the Administration Guide.

Allocating queue segments

You can choose the disk partition to which Replication Server allocates
segments for stable queues. By choosing the stable queue placement, you can
enhance load balancing and read/write distribution.

Administration Guide 593

Allocating queue segments

First allocation

Replication Server stores messages destined for other sites on partitions. It
allocates space in partitions to stable queues and operatesin IMB chunks
called segments. Each stable queue holds messages to be delivered to another
Replication Server or to adataserver. The queues hold datauntil itissent toits
destination.

rs_init assigns Replication Server’sinitial partition. You may need additional
partitions, depending on the number of databases and remote Replication
Servers to which the Replication Server distributes messages.

A Replication Server can have any number of partitions of varying sizes. The
sum of the partition sizes is Replication Server’s capacity for queued
transactions.

By default, Replication Server assigns queue segments to the first partition in
an ordered list of partitions. See Figure 16-8. When the first partition becomes
full, thefirst partition becomesthelast partition, and the next queue segment is
alocated to the new first partition. When the default method is used, therolling
alocation of segmentsis automatic and cannot be controlled by the user.

Figure 16-8: Default allocation mechanism

Partition 1 Partition 2 Partition3 | — — 7 Partitionn

*Allocation

Second allocation

Partition 2 Partition3 £ — — 7 Partition n Partition 1

*Allocation

594

Replication Server

CHAPTER 16 Performance Tuning

Choosing disk allocations

An example

Administration Guide

To choose the segment allocation, use the alter connection or alter route
command with the “set disk_affinity” option. The syntax is:

alter connection to dataserver.database
set disk_affinity to ['partition’ | 'off']

alter route to replication_server
set disk_affinity to ['partition’ | 'off']
partition is thelogical name of the partition to which you want to allocate the
next segment for the connection or route.

Each alocation directiveiscalled a“hint” because Replication Server can
overridetheallocationiif, for example, the allocated partitionisfull or has been
dropped. If Replication Server overrides the hint, it allocates segments
according to the default mechanism described in Figure 16-8.

Replication Server checksfor an allocation hint each time it allocates a new
segment for aqueue. Each hint isstored in thers_diskaffinity system table. Each
partition may have many hints, but each stable queue can have only one hint.

Successfully using disk allocation to improve performance depends on the
architecture and other characteristics of your site. Sybase suggeststhat one way
to improve overall throughput isto associate faster devices with those stable
gueues that process more slowly.

You can alocate different disk partitionsto different stable queues. You could,
for example, make partitions of different sizes available to different database
connections. In this example, we add partitions of 10MB and 20MB to the
Replication Server and specify allocation hints for the TOKYO_DS and
SEATTLE DS data servers. The procedureis:

1 MakethepartitionsP1 and P2 on the device named /dev/rdsOa available to
Replication Server, enter:

add partition Pl on '/dev/rdsOa' with size 20
add partition P2 on '/dev/rdsOa' with size 10

2 Suspend the connection to the TOKYO_DS and SEATTLE_DS data
servers, enter:

suspend connection to TOKYO DS
suspend connection to SEATTLE_DS

595

Allocating queue segments

3 Specify alocation hints for the connection to the TOKYO_DS and
SEATTLE_DS data servers, enter:

alter connection to TOKYO DS.dbl
set disk affinity to 'P1!'
alter connection to SEATTLE DS.db5
set disk affinity to 'P2'
4 Resume the connectionsto the TOKYO_DSand SEATTLE DS data
servers, enter:

resume connection to TOKYO DS
resume connection to SEATTLE DS

Dropping hints and partitions

You can remove an allocation hint using the alter connection or alter route
command with the set disk_affinity to 'off' parameter. For example:

alter connection to TOKYO DS.dbl

set disk affinity to 'P1' to 'off'
This command deletes the allocation hint for P1 from the rs_diskaffinity table.
You can remove a partition from Replication Server using the drop partition
command. If the partition you are dropping has one or more allocation hintsin
the rs_diskaffinity table, Replication Server marks the allocation hints for

deletion, but does not delete them until all data stored on the partition has been
successfully delivered and the partition has been dropped.

596 Replication Server

CHAPTER 17

Introduction

Administration Guide

Using Counters to Monitor
Performance

This chapter describes Replication Server counters that monitor
performance. “Using counters to monitor RepAgent performance” on
page 134 describes RepAgent counters that monitor performance.

Topic Page
Introduction 597
Modules and counters: an overview 598
Enabling sampling and flushing 600
Configuring modules, connections, and routes 603
Viewing information about the counters 605
Viewing current counter values 606
Viewing values flushed to the RSSD 607
Resetting counters 608
dSTATS daemon thread 608

Replication Server gathers statistics using over a hundred different
counters. By default, most counters are active, and current values can be
viewed at any time using the admin statistics command. Counter values
can also be flushed (or saved) to the RSSD, where they can be calculated
and viewed using standard Transact-SQL statements.

Replication Server does not automatically flush statistics to the RSSD
because it would fill up the RSSD quickly. The counter configuration is
designed to limit the output sent to the RSSD. Several commands and
configuration parameters allow you to control which counter metrics are
flushed to the RSSD and when.

The thread daemon, dSTATS, controls flushing. Three system tables
contain information about counters:

597

Modules and counters: an overview

e rs_statcounters — contains descriptive information about each counter.
Vauesin thistable do not change.

e rs_statrun — describes each sampling period (or run).
¢ rs_statdetail — contains metrics from each run.

See the Replication Server Reference Manual for information about system
tables.

Modules and counters: an overview

Replication Server runs multiple threads concurrently. The total number of
threads depends on the number of databases that a Replication Server manages
and the number of Replication Serversto which it has direct routes. Each
thread performs a specific function such as managing a user session or
applying transactions to databases.

Modules

Some threads call specific portions (or “modules’) of Replication Server to
determine the destination of messages and transactions, and to determine what
operationsto replicate and how to replicate them. Replication Server provides
one or more counters for each Replication Server module.

Modules are of three types:

¢ Multithreaded modules — can have multiple thread instances. They
include:

e Stable Queue Manager (SQM)

e Stable Queue Transaction (SQT)

e Distributor (DIST)

¢ DataServer Interface (DSI)

¢ Replication Server Interface (RSI)
¢ Replication Agent (REPAGENT)

598 Replication Server

CHAPTER 17 Using Counters to Monitor Performance

Counters

Names

Types

Administration Guide

¢ Single-threaded modules— have only one thread instance. All Replication
Server daemons, such as the Connection Manager Daemon (dCM), are
single-threaded modules.

¢ Nonthreaded modules — have no thread instance. They include:
¢ Message Delivery (MD)
e Transaction Delivery (TD)
e Subscription Resolution Engine (SRE)
e System Table Services (STS)
¢ Memory Management (MEM)

Each thread of a multithreaded module has one instance of that module's
counters. Single-threaded and nonthreaded modules have only one counter
instance.

Sybase provides over 100 counters for monitoring Replication Server
performance. Additional counters may be added in later releases. You can view
descriptive information about the current counters using the rs_helpcounter
stored procedure. See “Viewing information about the counters’ on page 605.

Each counter has three different names: a descriptive external name, a display
namethat you useto identify the counter through RCL, and aunique ID within
Replication Server.

Each counter hasatypethat determinesits datasampling method. Countersare
of four different sampling types:

e Maximum-value counters — keep only the largest value sampled.

* Average-value counters — keep the total of all values sampled and the
number of items sampled.

e Last-value counters — keep the last value of sampled data.
e Cumulative-total counters —keep running total of sampled data.

599

Enabling sampling and flushing

Status options

Each counter may also have status information that determines calculation
operations. Some counters may require additional data processing or
information from other counters or modules.

Table 17-1 describes the counter status options. Counters can have zero to
severa status options.

Table 17-1: Counter status options

Counter status Description

CNT_INTRUSIVE Counters that may impact Replication Server
performance.

CNT_INTERNAL Counters used by Replication Server and other counters.

CNT_SYSMON Counters used by admin statistics, sysmon command.

CNT_MUST_SAMPLE | Countersthat sample even if sampling is not enabled.

CNT_NO_RESET Counters that are not reset after initialization.

CNT_DURATION Counters that measure duration.

CNT_RATE Counters that measure rate.

CNT_KEEP_OLD Counters that keep both the current and previous value.

CNT_CONFIGURE Countersthat keep the run value of a Replication Server
configuration parameter.

Enabling sampling and flushing

600

By default, sampling is enabled and most counters sample data continually
with minimal impact on server performance. Counters that may affect
performance (intrusive counters) are by default set to off.

When you enable sampling, counters register metrics but do not store them. To
store the information, you must also enabling flushing. See “Enabling
flushing” on page 602.

Most of the parameters described in this section are set at the Replication
Server level and affect all counters and/or flushing of all counters. These
parameters take effect immediately and do not retain their value after
Replication Server shuts down.

Replication Server

CHAPTER 17 Using Counters to Monitor Performance

However, several module and connection parameters are persistent across
Replication Server executions. These parameters include stats_sampling,
statss_flush_rssd, stats_reset_afterflush, and stats_daemon_sleep_time.
Changesto these parameters take effect immediately and do not require you to
reboot Replication Server.

Sybase recommends that you set these parameters immediately after loading
the software.

[—IEnabling counter sampling and flushing:

Thisis ageneral procedure for enabling sampling and flushing for both
intrusive and non-intrusive sampling. Not all steps are required. If you do not
want to enable intrusive counters, for example, skip step 2.

Note This procedure enables sampling and flushing. It provides an easy way
to turn sampling and flushing on and off. To turn on flushing for individual
threads or modules, see “ Configuring modules, connections, and routes’ on
page 603.

1 Enable sampling of non-intrusive counters using the configure replication
server set 'stats_sampling' to 'on' command. The default valueis“on.”

2 Enable sampling of intrusive counters using the admin
stats_intrusive_counters, 'on' command. The default value is “off.”

3 Enableflushing of countersto the RSSD using the configure replication
server set 'stats_flush_rssd' to 'on' command. The default value is * off.”

4 Enableresetting of counters after flushing using the configure replication
server set 'stats_reset_afterflush' to 'on' command. The default valueis
“on”

5 Set period, in seconds, between flusheswith the configure replication server
set 'stats_daemon_sleep_time' to sleeptime command. The default valueis
600 seconds.

Enabling sampling of non-intrusive counters

Administration Guide

You enable or disable al sampling at the Replication Server level using the
configure replication server command with the stats_sampling option. The
default ison. The syntax is:

configure replication server set 'stats_sampling’
to {'on'| 'off' }

601

Enabling sampling and flushing

If sampling is disabled, the counters do not record data and no metrics can be
flushed to the RSSD.

Enabling sampling of intrusive counters

Most counters sample data with minimal effect on Replication Server
performance. Counters that may affect performance—intrusive counters—are
enabled separately so that you can enabl e or disable them without affecting the
settings for non-intrusive counters.

Three counters may affect performance:

¢ TranTimelLast — records the time, in one-hundredths of a second, for the
DSl thread to process the last transaction in arun.

e TranTimeMax — records the maximum time, in one-hundredths of a
second, for the DSI thread to process a transaction in arun.

e TranTimeAve — records the average time, in one-hundredths of a second,
for the DSI thread to process atransactionin arun.

You can enable or disable intrusive counters using the admin
stats_intrusive_counters command. The default is“ off.” The syntax is.

admin stats_intrusive_counters, { 'on' | 'off' }

Enabling flushing

Use the configure replication server command with the stats_flush_rssd option
to enable or disable flushing. The default is“off.” The syntax is:

configure replication server set 'stats_flush_rssd'
to {'on'| 'off' }
You must enable flushing before you can configure individual modules,
connections, and routes to flush.

Enabling reset after flushing

Use the configure replication server command with the stats_reset_afterflush
option to specify that countersareto bereset after flushing. The defaultis®on.”
The syntax is:

onfigure replication server set
'stats_reset_afterflush' to { 'on' | 'off' }

602 Replication Server

CHAPTER 17 Using Counters to Monitor Performance

Certain counters, such asrate counterswith CNT_NO_RESET status, are
never reset. See “Resetting counters’ on page 608 for more information.

Setting seconds between flushes

You set the number of seconds between flushes at the Replication Server level
using the configure replication server command with the
stats_daemon_sleep_time option. The default is 600 seconds. The syntax is:

configure replication server set
'stats_daemon_sleep_time' to sleeptime

The minimum value for sleeptime is 10 seconds; the maximum valueis
3153600 seconds (365 days).

Configuring modules, connections, and routes

A hierarchy of configuration options limit the flushing of countersto the
RSSD. admin stats_config_module lets you configure flushing for a particular
module or for all modules. For multithreading modules, you can choose to
flush metrics from amatrix of available counters. For example, you can
configure flushing for amodule, for a particular connection, or for all
connections.

Configuration parameters that configure counters for flushing are not
persistent; they do not retain their values when Replication Server shuts down.

Before you can configure acounter for flushing, make surethat you first enable
the sampling and flushing of counters. See*Enabling sampling and flushing”
on page 600.

Note Replication Server does not flush counters that have a value of zero.

Flushing for all modules

You can set flushing on for all counters of individual modules or all modules
using the admin stats_config_module command. The default is“off.” The
syntax is.

Administration Guide 603

Configuring modules, connections, and routes

admin stats_config_module, { module_name |
‘all_modules'}, {'on'| 'off'}

module_name is dist, dsi, rsi, sqm, sqt, sts, repagent, cm, Or sts.
This command is most useful for single or nonthreaded modules, which have
only onethread instance. For multithreaded modules, you have greater control

over which threads are set on if you use the admin stats_config_connection and
admin stats_config_route commands.

Note If amodule'sflushing statusis set on, countersfor all threads for that
module will be set on also.

Flushing for multithreaded modules

Connections

Routes

604

The number of threads for a multithreaded modul e depends on the number of
connections and routes Replication Server manages. You can configure
flushing for individual threads or groups of threads.

Use the admin stats_config_connection command to enable flushing for threads
related to connections. The syntax is:

admin stats_config_connection, { data_server, database |
all_connections }, { module_name | all_modules },
['inbound' | 'outbound'], { 'on’ | "off’ }

Keyword and parameter descriptions are:

e data server isthe name of adata server.

e database isthe name of adatabase.

e all_connections specifies all database connections.
 module nameisdist, dsi, repagent, sqm, Of sqt.

¢ all_modules specifiesthe DIST, DSI, REPAGENT, SQM, and SQT
modules.

¢ inbound | outbound identifies SQM or SQT for an inbound or outbound
queue.

You can use the admin stats_config_route command to save statistics gathered
on routes for the SQM or RSl modules. The syntax is:

admin stats_config_route,{ rep_server |
all_routes },{ module_name | all_modules },
{'Onllloffl}

Replication Server

CHAPTER 17 Using Counters to Monitor Performance

where rep_server isthe name of the remote Replication Server, all_routes
specifies al routes from the current Replication Server, and module_nameis
sgm Ofr rsi.

Note If you configure flushing for athread, Replication Server also turns on
flushing for the module. This does not turn on flushing for existing threads of
that module, but all threads will have flushing turned on.

Viewing information about the counters

You can view descriptive information about the counters stored in the
rs_statcounters table using the rs_helpcounter system procedure. See
“rs_helpcounter” in the Replication Server Reference Manual for detailed
syntax and usage information.

Administration Guide

To view alist of modulesthat have counters and the syntax of the
rs_helpcounter procedure, enter:

rs_helpcounter

To view descriptiveinformation about all countersfor aspecified module,
enter:

rs_helpcounter module_ name
[, {type | short | long}]

If you enter type, Replication Server prints the display name, module
name, counter type, and counter status for each of the modul€’s counters.

If you enter short, Replication Server prints the display name, module
name, and counter descriptions for each counter.

If you enter long, Replication Server printsevery columninrs_statcounters
for each counter.

If you do not enter a second parameter, Replication Server prints the
display name, the module name, and the external name of each counter.

Tolist all counters that match a keyword, enter:
rs_helpcounter keyword [, {type | short | long}]
To list counters with a specified status, the syntax is:

605

Viewing current counter values

rs_helpcounter { 'intrusive' | 'sysmon' | 'rate’
| 'duration’ | 'internal’ | 'must_sample’
| 'no_reset' | 'keep_old' | 'configure' }

See Table 17-1 on page 600 for a descriptions of status types.

Viewing current counter values

Replication Server provides aset of admin statistics commandsthat you can use
to display current metrics from enabled counters. Replication Server can
display information about these modules: DSI, DSIEXEC, SQT, dCM, DIST,
RSI, SOM, REPAGENT, MEM, MD, and MEM _IN_USE.

See “admin statistics” in the Replication Server Reference Manual for detailed
information about this command.

606

To view the current values for one or al the counters for a specified
modul e, enter:

admin statistics, module name [, display namel

where module-name is the name of the module and display_nameisthe
display name of the counter. To determine the display name of a counte,
use rs_helpcounter.

To view current values for all enabled counters, enter:

admin statistics, 'all modules'

To view asummary of values for the DSI, DSIEXEC, REPAGENT, and
RSI modules, enter:

admin statistics, sysmon [, sample period]

where sample_period isthe number of secondsfor the run. admin statistics,
sysmon [, sample_period] zeros the counters, samples for the specified
sample period, and prints the results. If sample_period is 0 (zero) or not
present, admin statistics, sysmon [, sample_period] prints the current
values of the counters.

To display counter flush status, enter:

admin statistics, flush status

Replication Server

CHAPTER 17 Using Counters to Monitor Performance

Viewing values flushed to the RSSD

You can view information flushed to thers_statdetail and rs_statrun tablesusing
select and other Transact-SQL commands. If, for example, you want to display
flushed information from the dCM module counters, you might enter:

counter name

CM:Daemon dSTATS
schedule count
CM:Daemon dSTATS
schedule count
CM:Daemon dSTATS
schedule count
CM:Daemon dSTATS
schedule count
CM:Daemon dSTATS
schedule count
CM:Daemon dSUB
schedule count
CM:Daemon dSUB
schedule count
CM:Daemon dSUB
schedule count
CM:Daemon dSUB
schedule count
CM:Daemon dSUB
schedule count

Administration Guide

select counter name, module name,
run_date from rs_statcounters c,
rs_statdetail d, rs_statrun r

counter val,

where c.counter id

instance id,

= d.counter_id and
d.run _id = r.run id and c.module name =
order by counter name

'CM!

In thisinstance, the counters have been configured to flush every two minutes
Ugngth8configure replication server set
'stats_daemon_sleep time' to '120' command.

Replication Server displays:

module name instance id counter val run date

CM

CM

CM

CM

CM

CM

CM

CM

CM

CM

13

13

13

13

13

13

13

13

13

13

1

Feb 26 2001

Feb

Feb

Feb

Feb

Feb

Feb

Feb

Feb

Feb

26

26

26

26

26

26

26

26

26

2001

2001

2001

2001

2001

2001

2001

2001

2001

11:

11:

11:

11:

11:

11:

11:

11:

11:

11:

16AM

18AM

20AM

22AM

24AM

16AM

18AM

20AM

22AM

24AM

607

Resetting counters

Resetting counters

Counters are reset when a thread starts. In addition, some counters are reset
automatically at the beginning of a sampling period.

You can reset counters by:

e Configuring Replication Server to ensure that counters are reset after
sampling datais flushed to the RSSD. Use the configure replication server
set 'stats_reset_afterflush' to 'on' command.

e Issuing the admin statistics, reset command to reset all counters.

You canreset all counters except counterswith CNT_NO_RESET status, such
asrate counters, which are never reset. Countersthat can be reset, reset to zero.

dSTATS daemon thread

The dSTAT S daemon thread supports Replication Server’s counters feature by:
e Managing the interface for flushing counters to the RSSD.
e Cadculating derived values when the daemon thread wakes up.

dSTATS manages the interface when Replication Server has been configured
to flush statistics to the RSSD using the configure replication server command
and the stats_flush_rssd parameter.

You can configure a sleep time for dSTATS using the configure replication
server command and the stats_daemon_sleep_time parameter. When the
daemon wakes up, it attemptsto cal cul ate derived statistics such as the number
of DSI-thread transactions per second or the number of RepAgent bytes
delivered per second.

608 Replication Server

CHAPTER 18

Handling Errors and Exceptions

This chapter describes various error handing methods for Replication
Server.

Name Page
General error handling 609
Error log files 610
Data server error handling 615
Exceptions handling 620
DSl duplicate detection 625
Duplicate detection for system transactions 626

Refer to the Replication Server Troubleshooting Guide for information
about resolving specific errors.

General error handling

Administration Guide

Replication Server passes messages to data servers and other Replication
Serverswhile they are accessible and queues messages when connections
are down. Using Sybase Central, you can monitor the status of the
replication system and troubleshoot problems as they arise.

Normally, short-term failures of networks and data servers do not require
special error handling or intervention. When the failure is corrected,
replication system components resume their work automatically.
Lengthier failures may require intervention if there is not enough disk
space to queue up messages or if it is necessary to reconfigure the
replication system to work around the failure.

Failures of some system components, such as Replication Server
partitions or primary databases, also require user intervention. Refer to
Chapter 19, “Replication System Recovery” for more information about
recovery procedures.

609

Error log files

Error log files

RSM

A Replication Server’s response to errors depends on the kind of error, source
of the error, and how the Replication Server is configured. Replication Server
handles errorsin these ways:

e Logserrorsinitserror log file.
¢ Respondsto data server errors based on configuration settings.

¢ If transactions fail to commit in a database, writes the transactions to the
exceptions log for manual resolution.

¢ Detects duplicate transactions after system restart.

This section describes error log filesin the replication system. You can access
log files to help you troubleshoot Replication Server and RepAgent. To view
skipped transactions that are written to system tables, you can access the
Adaptive Server for the Replication Server managing a specified database.
Refer to the Replication Server Troubleshooting Guide for details on
troubleshooting errors.

Replication Server allows user-definable error processing in response to data
server errors. For details, see “Data server error handling” on page 615.

For instructions on viewing and refreshing the error log in Sybase Central, see
“Viewing the Error Log” in Replication Server’s plug-in help.

Replication Server error log

610

The Replication Server error log is atext file where Replication Server writes
informational and error messages.

By default, the Replication Server error log file name is repserver.log, and
resides in the directory where you started the Replication Server. You can
specify the name and location of the error log file by using the-E command line
flag when you start the Replication Server or in a Replication Server run file

Each log message begins with aletter to indicate the message type. Table 18-1
lists the possible message types.

Replication Server

CHAPTER 18 Handling Errors and Exceptions

Table 18-1: Message types in the Replication Server error log

Error
code

Description

An informational message.

A warning about a condition that has not yet caused an error, but may require attention. An
exampleis running out of aresource.

An error that does not prevent further processing, such as a site that is unavailable.

A Replication Server thread has died. An exampleis alost network connection.

Fatal. A serious error caused Replication Server to exit. An exampleis starting the
Replication Server with an incorrect configuration.

Internal error. These errors are caused by anomalies in the Replication Server software.
Report these errors to Sybase Technical Support.

Informational messages

For informational messagesin the error log, the format is as follows:
I. date: message

Theletter “1” at the beginning of a message meansthat the messageis provided
for information. It does not mean that an error occurred. For example,
Replication Server outputs the following messages as it drops a subscription:

I. 95/11/01 05:41:54. REPLICATE RS: Dropping
subscription <authors sub> for replication definition
<authors> with replicate at <SYDNEY DS.pubs2>

I. 95/11/01 05:42:02. SQM starting: 104:-2147483527
authors.authors sub

I. 95/11/01 05:42:12. SQM Stopping: 104:-2147483527
authors.authors sub

I. 95/11/01 05:42:20. REPLICATE RS: Dropped
subscription <authors sub> for replication definition
<authors> with replicate at <SYDNEY DS.pubs2>

Error and warning messages

Administration Guide

For messages other than informational messages, the format is as follows:

severity, date. ERROR #error number
thread name(context) - source file(line) message

If the message isawarning, “ERROR” in the above format becomes
“WARNING”

611

Error log files

612

The severity iseither W, E, H, F, or N, aslisted in Table 18-1. The date isthe
date and time that the error occurred. The error_number is the Replication
Server error number.

Thethread_nameisthe name of the Replication Server thread that received the
error. See Chapter 2, “Replication Server Technical Overview” and Chapter
16, “Performance Tuning” for details about Replication Server threads. The
context provides some information about the thread’s context at the time the
error occurred.

The source_file and line point to the program file and line number in the
Replication Server source code where the error was reported.

The message isthefull text of amessage from aReplication Server. It isin the
language specified in the RS _language configuration parameter. Some
messages al so include a message from a data server, or one of the component
libraries that Replication Server uses.

Note Replication Server puts question marks (?) in messages where more
specific information is not available. For example, if an error occurs during
initialization, Replication Server may not yet have completed some internal
structures, so it prints question marksin place of information it has not yet
collected.

Thefollowing example shows the Replication Server error log entry for adata
server:

E. 95/11/01 05:30:52. ERROR #1028 DSI (SYDNEY DS.pubs2)

- dsigmint.c(3522)Message from server:

Message: 2812, State: 4, Severity: 16 --

'Stored procedure ’‘upd_authors’ not found.

H. 95/11/01 05:30:53. THREAD FATAL ERROR #5049
DSI (SYDNEY DS.pubs2) - dsigmint.c(3529)

The DSI thread for database ’'SYDNEY DS.pubs2’ is being
shutdown because of error action mapped from data server
error ‘2812’ . The error was caused by output command ‘1’
mapped from source command ‘2’ of the transaction.

The messages indicate that Adaptive Server returned error number 2812,
causing Replication Server to take the stop_replication action. See “Assigning
actions to data server errors’ on page 618.

Replication Server

CHAPTER 18 Handling Errors and Exceptions

Finding the name of the Replication Server error log

Use the admin log_name command to find the name of the current Replication
Server error log file. Replication Server displays the path to the log file, asthe
following UNIX example shows:

Log File Name

/work/sybase/SYDNEY RS/SYDNEY RS.log

Changing to a new Replication Server log file

To begin anew error log file, use the admin set_log_name command. This
command closes the current log file and opens a new one. Subsequent
messages are written in the new log file.

Following is an example of the admin set_log_name command for UNIX:

admin set log name,
' /work/sybase/SYDNEY RS/951101.log'

The previous log remains active if Replication Server failsto create and open
the new log file.

RepAgent error log messages

Administration Guide

All RepAgent error, trace, and information messages are logged in the
Adaptive Server error log file. Each message identifies the RepAgent that
logged the error in the string “ RepAgent (dbid)”, which appearsinthefirst line
of the message. dbid isthe database identification number of the RepAgent that
logged the error.

Hereis an example of an information message:

RepAgent (dbid) : Recovery of transaction log is
complete. Please load the next transaction log dump and
then start up the Rep Agent Thread with
sp_start rep agent, with ’'for recovery’ specified.

The Adaptive Server error log is atext file. The messages are printed in the
language specified at Adaptive Server. RepAgent records errors and
informational messages that occur when transferring replicated objects from
the Adaptive Server transaction log and converting them into commands.
RepAgent errors are generally in the 9200 to 9299 range.

613

Error log files

Adaptive Server performs actions based on the severity and recoverability of
an error. Some errors are for information only, others cause Adaptive Server to
retry the operation that caused the error until it succeeds, and still others
indicate an error too severe to continue and RepAgent shuts down. For more
information about the Adaptive Server error log file, refer to the Adaptive
Server System Administration Guide.

For information about LTM error messages, see Appendix B, “LTM for SQL
Server.”

Sample error messages

This section describes some common RepAgent error messages and possible
solutions.

* Inthisexample, the RepAgent login nameisnot present on the Replication
Server.

RepAgent (6) : Failed to connect to Replication
Server. Please check the Replication Server,
username, and password specified to
sp_config rep agent. RepSvr = repserver name, user =
RepAgent username

RepAgent (6) : This Rep Agent Thread is aborting due
to an unrecoverable communications or Replication
Server error.

You must either add RepAgent’s login name to Replication Server or
change RepAgent’s login name.

¢ Inthisexample, RepAgent cannot connect to Replication Server.

RepAgent (7) : The Rep Agent Thread will retry the
connection to the Replication Server every 60
second(s). (RepSvr = repserver name.)

Check Replication Server status. If Replication Server isdown, resolvethe
problem and restart. Otherwise, wait for possible network problem to
resolve.

614 Replication Server

CHAPTER 18 Handling Errors and Exceptions

Data server error handling

Replication Server allows user-definable error processing for data server
errors. Thisis accomplished by creating an error class for a database and
specifying responses for each error that the data server returns when the error
is encountered in the database. The data server returns the defined errors to
Replication Server. Table 18-2 lists the RCL commands and Adaptive Server
system procedures that manage errors and error classes.

Table 18-2: RCL commands and system procedures for error
processing

Command Description

rs_helpclass Adaptive Server system procedure that displays the name of each existing
error class, function-string class, and their primary Replication Server

create error class Creates anew error class

drop error class Drops an existing error class

assign action Specifies an error processing action for one or more data server errors

create connection Associates an error class with a new database connection

alter connection Associates an error class with an existing database connection

Creating an error

Administration Guide

A default error class, rs_sqlserver_error_class, isprovided for Adaptive Server
databases.

class

You can define asingle error class to use with all databases managed by the
sametype of dataserver. For example, you can use the default Adaptive Server
error class, rs_sqlserver_error_class, with any Adaptive Server database. There
is no need to create another error class unless a database has specid error-
handling requirements.

An error classisaname used to group error action assignments. The syntax for
the create error class command is:

create error class error_class

For example, to create an error class named pubs2_error_class, use this
command:

create error class pubs2 error class

615

Data server error handling

Initialy, rs_sqlserver_error_class, the default error class that is predefined to
work with Adaptive Server databases, does not have a primary site. Since you
can only create server-wide error classes at aprimary sitefor aclass, you need
to designate one of the Replication Servers as a primary site for a Adaptive
Server error class.

You must specify a primary site before you can modify a default error class.
You can designate a site as primary by executing the create error class
command for a Adaptive Server error class at that site. To do this, execute
create error class rs_sqlserver_error_class at the primary site. Make sure al
other Replication Servers have direct or indirect routes from the primary site.

The default error action for al errors returned by adata server is
stop_replication. Thisis also the most serious action: it suspendsreplication for
the database, asif you entered the suspend connection command. To assign less
severe actions to errors you want to handle differently, use the assign action
command. See “Assigning actionsto data server errors’ on page 618 for more
information.

Initializing a new error class

After you have created anew error class, you caninitializeit with error actions
from an error class such asthe system-provided rs_sglserver_error_class. Todo
this, use the rs_init_erroractions stored procedure:

rs_init_erroractions new_error_class, template_class

For example, to create the error class pubs2_error_class, based on the template
error classrs_sqlserver_error_class, enter:

rs_init_erroractions pubs2_error_class,
rs_sglserver error class

Then usethe assign action command to change the actionsfor individual errors.

Dropping an error class

616

The drop error class command drops an error class and all actions associated
with it. The error class must not be in use with an active database connection
when you drop it. The syntax for drop error class is:

drop error class error_class

For example, to drop the pubs2_error_class error class, use this command:

Replication Server

CHAPTER 18 Handling Errors and Exceptions

drop error class pubs2 error class

You cannot drop the rs_sqlserver_error_class error class.

Changing the primary Replication Server for an error class

Administration Guide

Use the move primary command to change the primary site for an error class.
Thisisnecessary when you are changing the primary site from one Replication
Server to another so that error actions can be distributed through new routes.
For example, you must use this command if you are dropping from the
replication system the Replication Server that isthe current primary sitefor an
error class.

Before you execute move primary, make sure that a route exists from:

* Thenew primary site to each Replication Server that will use the error
class

e Thecurrent primary to the new primary site
* Thenew primary to the current primary site

The syntax for the move primary command, for error classes, is:

move primary of error class class_name
to replication_server

Execute the move primary command at the Replication Server that you want to
designate as the new primary site for the error class.

* class_name—the name of the error class whose primary Replication
Server isto be changed.

» replication_server — specifies the new primary Replication Server for the
error class.

The following command changes the primary site for the pubs2_error_class
error classto the TOKY O_RS Replication Server where the command is
entered:

move primary of error class pubs2 error class
to TOKYO RS

For the default error class, rs_sqlserver_error_class, no Replication Server is
the primary site until you assign one as the primary site. You must specify a
primary site before you can use the assign action command to change default
error actions.

617

Data server error handling

To specify aprimary site for the default error class, execute the following
command in that Replication Server:

create error class rs_sglserver error class

After you have executed this command, you can use the move primary
command to change the primary site for the error class.

Displaying error class information

The Adaptive Server rs_helpclass stored procedure displays the names of
existing error classes and function-string classes in the replication system and
their primary Replication Servers. For example:

rs_helpclass error class
Error Class(es) PRS for class

rs_sglserver error class Not Yet Defined

Refer to “rs_helpclass’ in Chapter 6, “ Adaptive Server Stored Procedures,” in
the Replication Server Reference Manual for more information.

Assigning actions to data server errors

618

The assign action command specifies the action to take for errors that a data
server can return to Replication Server. The syntax for the assign action
command is:

assign action {ignore | warn | retry_log | log |
retry_stop | stop_replication}

for error_class

to data_server_error [, data_server_error]...

For example, to instruct Replication Server to ignore Adaptive Server errors
5701 and 5703:

assign action ignore
for rs_sglserver error class
to 5701, 5703

The default error class provided for Adaptive Server databasesis
rs_sqlserver_error_class. You must create this error class at aprimary site
before you can use the assign action command to change default error actions.
The data_server_error parameter is the data server error number.

Replication Server

CHAPTER 18 Handling Errors and Exceptions

Enter one of the six possible error actions at the Replication Server where the
error class was created. These actions are listed in Table 18-3, in order of
severity: ignore isthe least severe action and stop_replication isthe most severe.

When atransaction causes multiple errors, Replication Server choosesjust one
action—the most severe action assigned to any of the errors that occurred. To
return an error to the default error action, stop_replication, you must reassign it

explicitly.
Table 18-3: Replication Server actions for data server errors
Action Description
ignore Assume that the command succeeded and that there is no error or warning condition to process.
This action can be used for areturn status that indicates successful execution.
warn Log awarning message, but do not roll back the transaction or interrupt execution.
retry_log Roll back the transaction and retry it. The number of retry attemptsis set with the configure

connection command. If the error continues after retrying, write the transaction into the
exceptions log, and continue, executing the next transaction.

log Roll back the current transaction and log it in the exceptions|og; then continue, executing the next
transaction.
retry_stop Roll back the transaction and retry it. The number of retry attemptsis set with the configure

connection command. If the error recurs after retrying, suspend replication for the database.

stop_replication Roll back the current transaction and suspend replication for the database. Thisis equivalent to
using the suspend connection command. This action is the default.

Since this action stops all replication activity for the database, it isimportant to identify the data
server errorsthat can be handled without shutting down the database connection, and assign them
to another action.

Displaying assigned actions for error numbers

Execute the rs_helperror stored procedure to display the action assigned for an
error number. The syntax for the rs_helperror stored procedureis:

rs_helperror server_error_number [, v]

where server_error_number parameter isthe data server error number of the
error you want information for. The v parameter specifies*“verbose” reporting.
When you supply this option, rs_helperror also displays the Adaptive Server
error message text, if available. Refer to “rs_helperror” in Chapter 6,
“Adaptive Server Stored Procedures,” in the Replication Server Reference
Manual for more details.

Administration Guide 619

Exceptions handling

Exceptions handling

RSM

When a transaction submitted by Replication Server fails, Replication Server
records the transaction in the exceptions log in the RSSD. The Replication
System Administrator at the site must resol ve the transactionsin the exceptions
log. See " Accessing the exceptions log” on page 622.

Transactionscanfail dueto errorssuch asduplicate keys, column value checks,
and insufficient disk space. They may also be rejected for reasons such as
insufficient permissions, version control conflicts, and invalid object
references.

Because skipping atransaction causes inconsistency and can have an adverse
affect on the system, you should review on aregular basis any transactionsthat
have been recorded in the exceptions|og and resolve them. The best resol ution
for atransaction may depend on the client application that originated it. For
example, if afailed transaction corresponds to areal-world event, such asa
cash withdrawal, the transaction must somehow be applied.

Refer to the Replication Server Troubleshooting Guide for more information
on the implications of skipping a transaction.

For information about exceptions handling, correcting transactions, and
purging the exceptions log in Sybase Central, see “Managing the Exceptions
Log” in Replication Server’s plug-in help.

Handling failed transactions

This section outlinesthe recommended processfor handling failed transactions
that require manual intervention.

Suspend database connection

620

When a data server begins rejecting transactions because of atemporary
failure, such as lack of space in adatabase or log file, you can suspend the
database connection until the error is corrected.

If the database connection is not suspended, Replication Server writes the
transactions into the exceptions log for the database. Since these transactions
must then be resolved manually, you can save time by shutting down the
connection until the error condition is corrected.

Replication Server

CHAPTER 18 Handling Errors and Exceptions

While a database connection is suspended, Replication Server stores
transactions in a stable queue. When the connection is resumed, the stored
transactions are sent to the data server.

To stop the flow of transactions from a Replication Server to a database, use
the suspend connection command:

suspend connection to data server.database

The command requires sa permission and must be entered at the Replication
Server that manages the database.

Analyze and resolve the problem

You then need to determine why the transaction failed, make corrections or
adjustments, and resubmit the transaction. For example, if atransaction failed
because the maintenance user had insufficient permissions, grant the
maintenance user the needed permissions and retry the transaction.

If you are resolving transactions in the exceptions log:

1 Retrievealist of thetransactionsfrom the exceptionslog. See“ Accessing
the exceptions log” on page 622.

2 Investigate the transactions to determine the cause of failure and the best
method for resolution.

3 Resolve the transactions according to your plan. For example, you might
correct a permissions problem and then resubmit a transaction.

4 Delete resolved transactions from the exceptions log. See “Deleting
transactions from the exceptions log” on page 624.

Resume the connection

Restart the flow of transactions for a suspended database connection with the
resume connection command. The same command is used whether you
suspended the connection intentionally, using the suspend connection
command, or whether it was suspended by Replication Server as the result of
an error action. The syntax for resume connection is:

resume connection to data_server.database
[skip transaction]

The command requires sa permission and must be entered at the Replication
Server that manages the database.

Administration Guide 621

Exceptions handling

Use the skip transaction clause to instruct Replication Server to ignore the first
transaction in the queue. You may need to do thisif atransaction continues to
fail each time you resume the connection.

Accessing the exceptions log

The exceptionslog isimplemented in three system tables in the RSSD:
rs_exceptshdr, rs_exceptscmd, and rs_systext.

e rs_exceptshdr stores general information about a transaction in the
exceptions log, such as the transaction ID, the database where the
transaction originated, and the data server where the error occurred.

e rs_exceptscmd storesinformation needed to retrieve the source and output
command text fromrs_systext. The sourceisthetext of thetransaction that
Replication Server receives from RepAgent. The output command is the
result of Replication Server function string mapping. Thereisone row for
each source and output command.

* rs_systext holdsthe text of the source and output commands. Each
command may have multiple rowsin rs_systext, indexed by the sequence
column.

Refer to Chapter 8, “Replication Server System Tables,” in the Replication
Server Reference Manual for a description of each of the columnsin these
system tables.

Displaying transactions in the exceptions log

You can display asummary list of all transactions in the exceptions log using
the rs_helpexception stored procedure. The syntax for the rs_helpexception
stored procedureis:

rs_helpexception [transaction_id, [, v]]

If you supply avalid transaction_id and v for “verbose” reporting,
rs_helpexception displays a detailed description of atransaction. Use
rs_helpexception with no parameters to obtain transaction_id numbers for all
transactionsin the exceptions log.

Querying the exceptions log system tables

You can join the rs_exceptshdr and rs_exceptscmd system tables on the
sys_trans_id column.

622 Replication Server

CHAPTER 18 Handling Errors and Exceptions

You canalsojointhers_exceptscmd and rs_systext system tablesto retrieve the
text of atransaction. To dothis, jointhecmd_id columninrs_exceptscmd to the
parentid column in rs_systext.

Figure 18-1 illustrates the exceptions log system tables.
Figure 18-1: Exceptions log system tables

rs_exceptshdr

sys_trans_id rs_id rs_exceptscmd

rs_trans_id binary . . rs_systex
app_trans_name varchar sys_trans_id rs_id

orig_siteid int src_cmd_line int prsid int
orig_site varchar output_cmd_index int parentid rs_id
orig_db varchar cmd_type char / texttype char
orig_time datetime cmd_id rs_id sequence int
orig_user varchar textval varchar
error_siteid int

error_site varchar

error_db varchar

log_time datetime

ds_error int

ds_errmsg varchar

error_src_line int

error_proc int

err_output_line int

log_reason char

trans_status smallint

retry_status smallint

app_usr varchar

app_pwd varchar

The rs_exceptshdr system table contains descriptive information about the
transactions in the exceptions log, including the following:

e User-assigned transaction name

Administration Guide 623

Exceptions handling

e Site and database where the transaction originated
e User at the origin site who submitted the transaction

* Information about the error that caused the transaction to be recorded in
the exceptions log

Toretrieve alist of the excepted transactions for a given database, use, for
example, the following query:

select * from rs_ exceptshdr
where error site = 'data server'
and error_db = 'database'

order by log time

To retrieve the source and output text for atransaction with agiven system
transaction 1D, use:

select t.texttype, t.sequence,

t.textval

from rs systext t, rs exceptscmd e

where e.sys trans id = sys trans id
and t.parentid = e.cmd id

order by e.src_cmd line, e.output_cmd_ index,
t.sequence

Refer to Chapter 8, “Replication Server System Tables,” in the Replication
Server Reference Manual for alist of al of the columnsin these Replication
Server system tables.

Deleting transactions from the exceptions log

To delete atransaction from the exceptions log, use the rs_delexception stored
procedure.

rs_delexception [transaction_id]

With no parameters, rs_delexception displays asummary of transactionsin the
exceptions log. If you supply avalid transaction_id, rs_delexception deletes a
transaction. You can find the transaction _id for a transaction by using either
rs_helpexception Or rs_delexception with no parameters.

624 Replication Server

CHAPTER 18 Handling Errors and Exceptions

DSI duplicate detection

The DS records the last transaction committed or written into the exceptions
log so that it can detect duplicates after a system restart. Each transaction is
identified by aunique origin database ID and an origin queue | D that increases
for each transaction.

Thelast transaction committed from each origin databaseis recorded at adata
server by executing the function strings defined for the data server’s function-
string class. For the system-defined classes, thisis donein the function string
for a commit command, that is, the rs_commit function. Every function-string
class supportsthers_get_lastcommit function, which returns the origin_gid and
secondary_gid for each origin database. The secondary_gid isthe ID of the
gueue used for subscription materialization or demateriaization.

The origin_gid and secondary_gid for the last transaction written into the
exceptions log from each origin is recorded into the rs_exceptslast system
table. However, transactions logged explicitly by the sysadmin log_first_tran
command are not recorded in this system table. These transactions are logged,
but they are not skipped.

When a DSl is started or restarted, it gets the origin_gid returned by the
rs_get_lastcommit function and the one stored in the rs_exceptslast system
table. It assumes that any transaction in the queue with an origin_gid less than
the larger of these two valuesis aduplicate and ignoresiit.

If the origin_gid values stored in adata server or the rs_exceptslast system table
are modified by mistake, non-duplicate transactions may be ignored or
duplicate transactions may be reapplied. If you suspect that this is happening
inyour system, check the values stored and compare them with thetransactions
in the database's stable queue to determine the validity of the values. If the
values are wrong, you must modify them directly.

Refer to the Replication Server Troubleshooting Guide for details on how to
dump transactions in a queue.

Administration Guide 625

Duplicate detection for system transactions

Duplicate detection for system transactions

626

truncate table and certain supported DDL commands are not logged, although
they can be replicated to standby and replicate databases. Refer to “ Supported
DDL commands and system procedures’ on page 488 for alist of DDL
commands supported for replication. Refer to the Adaptive Server Reference
Manual for information about each DDL command.

Replication Server copies these commands as system transactions, in which
Replication Server “sandwiches’ the truncate table or similar command
between two complete transactions. Execution of the first transaction is
recorded in the replicate database in the secondary_gid column of the
rs_lastcommit table and in the origin_gid column of that table. If Replication
Server records the second transaction, the system transaction has completed,
and Replication Server clears the secondary_gid column.

If there is a system failure, and you see the following error message when the
system restarts:

5152 DSI SYSTRAN SHUTDOWN, "There is a system
transaction whose state is not known. DSI will be
shutdown."

a system command has not completed, and the connection shuts down. You
must verify whether the command within the system transaction has executed
at the replicate database.

e If the command has executed, or if you choose to execute the command
yourself, you can skip thefirst transaction in the queue and continue with
the second transaction when you resume the connection. At the replicate
Replication Server, enter:

resume connection to data server.database
skip transaction

e If the command has not executed, you can fix the problem and then
execute the first command in the queue. At the replicate Replication
Server, enter:

resume connection to data server.database
execute transaction

You must include the skip transaction or execute transaction clause with resume
connection. Otherwise, Replication Server does not reset the secondary_gid
correctly, and the error message reappears.

Replication Server

CHAPTER 19

Administration Guide

Replication System Recovery

This chapter describes how to prevent or recover from certain kinds of
system failuresin areplication system.

Name Page
How to use recovery procedures 628
Configuring the replication system to support Sybase Failover 628
Configuring the replication system to prevent data loss 633
Recovering from partition loss or failure 637
Recovering from truncated primary database logs 642
Recovering from primary database failures 645
Recovering from RSSD failure 648
Recovery support tasks 663

While Replication Server tolerates most failure conditions and recovers
from them automatically, some failures require user intervention. This
chapter identifies those failures and provides procedures for recovery.
These procedures are designed to maintain the integrity of the replication
system by recovering lost and corrupted data and restoring that datato its
previous state.

You should design, install, and administer your replication system with
backup and recovery in mind. We assume that dumps are performed on a
regular basis and that appropriate tools and settings for handling recovery
arein place. See*“ Creating coordinated dumps’ on page 636 for detailson
performing dumps.

In this chapter, the current Replication Server refersto the one with a
database (for example, RSSD) that you are recovering. An upstream
Replication Server hasadirect or indirect route to the current Replication
Server. A downstream Replication Server is one to which the current
Replication Server has adirect or indirect route.

627

How to use recovery procedures

How to use recovery procedures

When using recovery procedures in this chapter, always write down or check
off recovery steps as you perform them. Such information can help Sybase
Technical Support determine where you are in the recovery procedure, if
necessary.

Table 19-1 lists failure conditions described in this chapter, and indicates
where to find information on corresponding failure symptoms and recovery
procedures.

Table 19-1: Overview of available recovery procedures

Failure condition

For symptoms and recovery procedures

Replication Server partition lossor failure “Recovering from partition loss or failure” on page 637

Truncated primary database logs “Recovering from truncated primary database logs’ on page 642

Primary database failure

“Recovering from primary database failures’ on page 645

RSSD failure

“Recovering from RSSD failure” on page 648

Recovery procedures are only intended for the specific situations noted in this
chapter. Do not use recovery procedures for replication system problems such
asfailureto replicate data.

Warning! Use recovery proceduresin this chapter only for the failure
condition specific to the procedure. Attempting to use recovery procedures on
conditions other than those specified can complicate your problem and require
more drastic recovery actions.

Refer to the Replication Server Troubleshooting Guide for help in diagnosing
and correcting problems.

Configuring the replication system to support Sybase

Failover

628

This section describes how Replication Server version 12.0 and later supports
Sybase Failover availablein Adaptive Server Enterprise version 12.0 and later.

Replication Server

CHAPTER 19 Replication System Recovery

Overview

Sybase Failover alows you to configure two version 12.0 and later Adaptive
Servers as companions. If the primary companion Adaptive Server fails, that
server’s devices, databases, and connections can be taken over by the
secondary companion Adaptive Server.

You can configure ahigh availability system either asymmetrically or
symmetricaly.

An asymmetric configuration includes two Adaptive Serversthat are
physically located on different machines, but share the same system devices,
system/master databases, user databases, and user logins. Thesetwo serversare
connected so that if one of the serversis brought down, the other assumes its
workload. The secondary Adaptive Server actsasa“ hot standby” and does not
perform any work until failover occurs.

A symmetric configuration also includes two Adaptive Servers running on
separate machines, but each Adaptive Server is fully functional with its own
system devices, system/master databases, user databases, and user logins. If
failover occurs, either Adaptive Server can act as aprimary or secondary
companion for the other Adaptive Server.

In either setup, the two machines are configured for dual access, which makes
the disks visible and accessible to both servers.

In areplication system, where Replication Server makes many connections to
Adaptive Servers, you can enable or disable Failover support of the database
connections initiated by a Replication Server to Adaptive Servers. When you
enable Failover support, Replication Servers connected to an Adaptive Server
that fails are automatically switched to the second companion machine,
reestablishing network connections.

See the Adaptive Server Enterprise documentation for more detailed
information about how Sybase Failover works in Adaptive Server. See the
Appendix, “High Availability on Sun Cluster 2.2,” for information about
Failover support for Replication Server.

Enabling Failover support in Replication Server

Administration Guide

You enable Failover support for each Replication Server in your system; once
for the RSSD connection, and once for all other database connections from the
specified Replication Server to Adaptive Servers.

629

Configuring the replication system to support Sybase Failover

You cannot enable Failover support for individual connections, except the
RSSD connection.

The default for Failover support in Replication Server is*“off” for al
connections from a Replication Server to Adaptive Servers.

For continuing replication, you should enable Failover support for all
connections. However, in some cases you may want to disable connection
Failover when the secondary server’s workload exceeds its capacity.

How Sybase Failover works with Replication Server

630

To configure Sybase Failover from Replication Server to Adaptive Server, the
Adaptive Server must be configured to allow connection failover. You can
configure Sybase Failover for aReplication Server from RSM using the Server
Configuration dialog box.

When Adaptive Servers are in failover companion mode and the primary
companion fails, the secondary companion takes over the workload.
Incomplete transactions or operations that require updates to the RSSD fail.
Replication Server retries existing connections, but new connections are failed
over.

For Data Server Interface (DSI) connections, the DS retriesfailed transactions
after abrief sleep.

For RSSD connections, user commands that are executed during failover do
not succeed. Internal operations (such as updates to locator, disk segment, and
so on) should not fail. Replication of RSSD objects should be covered by the
DSl.

Asynchronous commands (for example, subscription, routing, and standby
commands) may be rejected or encounter errors and require recovery if the
commands have been accepted but not completed. For example, a create
subscription command may have been accepted, but the subscription may still
be being created.

Note Failover support is not a substitute for warm standby. While warm
standby keeps a copy of a database, Failover support accesses the same
database from a different machine. Failover support works the same for
connections from Replication Server to warm standby databases.

Replication Server

CHAPTER 19 Replication System Recovery

Requirements

To enable Failover support, aReplication Server must connect to Adaptive
Serversthat are version 12.0 or later and configured for Failover.

Failover of Replication Server System Databases (RSSDs) and user
databasesis configured directly through the Adaptive Server.

Failover support responds only to failover of the Adaptive Servers; that is,
failover of Replication Serversis not supported.

LTMs do not support Failover; that is, RepAgents are required.

Adaptive Server isresponsible for the RepAgent thread failover and its
reconnection to Replication Server after failover/failback.

Each Replication Server configures its own connections.

Enabling Failover support for an RSSD connection

To enableFailover support for an RSSD connection, use either of thefollowing
methods:

Administration Guide

Users_init when you install a new Replication Server.

For instructions, see Chapter 2, “Configuring Replication Server and
Adding New Databases,” in the Replication Server Configuration Guide
for your platform.

Edit the Replication Server’sconfiguration file after you haveinstalled the
Replication Server.

a Useatext editor to open the Replication Server’s configuration file.
The default file name is the Replication Server name with a“.cfg”
extension.

The configuration file contains one line per entry.
b Findtheline“rRsSD _ha failover=no” and changeit to:
RSSD_ha_failover=yes

¢ Todisable Failover support for an RSSD connection, change the
“RSSD_ha failover=yes” tO:

RSSD_ha_ failover=no

These changes take affect immediately; that is, you do not have to
restart Replication Server to enable Failover support.

631

Configuring the replication system to support Sybase Failover

Enabling Failover support for non-RSSD database connections

You can enable Failover support for new database connections from the
Replication Server or RSM Server to Adaptive Servers using either of the
procedures in this section.

632

For more information about Sybase Failover, refer to the Adaptive Server
Enterprise book Using Sybase Failover in a High Availability System.

[—JEnabling Failover support using the Replication Server Manager (RSM)
plug-in for Sybase Central

1

Right-click the Replication Server or the RSM Server icon in the Sybase
Central view for which you want to configure Sybase Failover.

Select Configure from the drop-down menu. The Server Configuration
dialog box opens.

Choose General from the Categories drop-down list.

Select HA_failover from the list of configuration parameters.You may
need to scroll down through thelist to find the Sybase Failover parameter.

Enter the correct value in the Pending Value column.
For Replication Server:

e Enter “on” to turn on Sybase Failover.

e Enter “off” to turn off Sybase Failover.

For RSM Server:

e Enter “1” to turn on Sybase Failover.

e Enter “0” to turn off Sybase Failover.

Click OK. The Server Configuration dialog box closes.

Restart Replication Server or RSM Server, respectively, to have the new
parameter value take effect.

See " Starting Replication Server” in Chapter 4 of the Replication Server
Administration Guide for instructions.

[—JEnabling Failover support using configure replication server

1

2

If necessary, start the Replication Server, as described in the section
“Starting Replication Server” in Chapter 4 of the Replication Server
Administration Guide.

Log in to the Replication Server:

Replication Server

CHAPTER 19 Replication System Recovery

isqgl -Uuser name -Ppassword -Sserver name

where user_name must have Administrator privileges. Specify the name
of the Replication Server using the -S flag.

When your login is accepted, isql displays a prompt:
1>
3 Enter thefollowing RCL command:

configure replication server
set ha failover to 'on'

Configuring the replication system to prevent data loss

This section contains recommended measures for preventing data lossin the
event of anirrecoverable database error. If used properly, these measuresallow
you to restore replicated data using the system recovery procedures.

Save interval for recovery

Administration Guide

Replication Servers are designed to store messages from their source and
forward them to their destinations. To increase the chances of recovering
online messages after rebuilding stable queues, you can set save intervals,
measured in minutes, for routes between Replication Servers. A save interva
isthe amount of time that a message is stored after it has been forwarded. You
can aso set saveintervals for a physical or logical database connection from a
Replication Server, allowing Replication Server to save messagesin aDSI
outbound queue.

To find the current save interval for aroute or connection, use the admin who,
sqm command. The Save_Int:Seg column holds two values. The value
preceding the colon is the save interval. The value after the colon is the first
saved segment in the stable queue.

Details on setting save interval sfor routes and connections are described in the
following sections.

633

Configuring the replication system to prevent data loss

Routes between Replication Servers

If the Replication Server has suspended routes, or if a network or data server
connection is down, abacklog of messages may accumulate in the Replication
Server’s stable queues. The chance of recovering these messages decreases
with time. Source Replication Servers may already have deleted messages
from their stable queues and database logs may already have been truncated.

When you set the save interval for each route between Replication Servers,
you allow each Replication Server to retain messages for a minimum period of
time after the next site in the route acknowledges that it has received the
messages. The availability of these messages increases the chance of
recovering online messages after queues are rebuilt.

For example, in Figure 19-1 on page 634, Replication Server TOKYO_RS
maintainsadirect routeto MANILA_RS, and MANILA_RSmaintainsadirect
routeto SYDNEY_RS.

TOKY O_RS retains messages for a period of time after MANILA_RS has
received them. If MANILA_RS experiences apartition failure, it requires that
TOKY O_RSto resend the backlogged messages. MANILA_RScanalsoretain
messages to allow SYDNEY_RS to recover from failures.

When all of the messages stored on a stable queue segment are at least as old
asthesave_interval setting, Replication Server deletesthe segment soit can be
reused.

Figure 19-1: Save interval example

TOKYO_DS TOKYO_RS MANILA_RS SYDNEY_RS SYDNEY_DS

Setting the save
interval for routes

634

=

)

— (PP —

- B9

Primary
Data Server

Replicate
Data Server

TOKYO_RS MANILA_RS SYDNEY_RS
RSSD RSSD RSSD

To set the save_interval for aroute, execute the alter route command at the
source Replication Server. Using as an example the replication systemin
Figure 19-1, here is the command to set Replication Server TOKYO_RSto
save for one hour any messages destined for MANILA_RS:

Replication Server

CHAPTER 19 Replication System Recovery

alter route to MANILA RS
set save interval to '60'

By default, the save interval is set to 0 (minutes). For systems with low
volume, this may be an acceptabl e setting for recovery, since Replication
Server does not delete messages immediately after receiving acknowledgment
from destination servers. Rather, messages are deleted periodically in large
chunks.

However, to accommodate the volume and activity of sitesthat receive
distributions from the Replication Server and to increase the chance of full
recovery from database or partition failures, you may want to change the
save_interval setting.

In case of apartition failure on the stable queues, be sure your setting allows
adequate time to restore your system. Consider also the size of the partitions

that are allocated for backlogged messages. Partitions must be large enough to
hold the extra messages.

Refer to the Replication Server Design Guide capacity planning guidelinesfor
help in determining queue space requirements.

Connections between Replication Servers and data servers

When you set the save interval for aphysical or logical connection between a
Replication Server and a data server and database, you allow Replication
Server to save transactions in the DSI queue. You can restore the backlogged
transactions using the sysadmin restore_dsi_saved_segments command. Refer
to the Replication Server Reference Manual for more information.

You can use these saved transactions to resynchronize a database after it has
been loaded to a previous state from transaction dumps and database dumps.

For example, in Figure 19-1, if the replicate data server SYDNEY_DSthat is
connected to Replication Server SYDNEY _RS experiences afailure, it can
obtain the messages saved in the DSI queue at SY DNEY _RS to resynchronize
the replicate database after it has been restored.

You can also usethe save interval for setting up awarm standby of a database
that holds some replicate data or one that receives applied functions.

Administration Guide 635

Configuring the replication system to prevent data loss

Setting the save interval for connections

To set the save interval for adatabase connection, execute the alter connection
command at the Replication Server. For example, hereis the command to set
Replication Server SYDNEY _RSto save for one hour any messages destined
for itsreplicate data server SYDNEY_DS.

alter connection to SYDNEY DS.pubs2
set save_ interval to '60'

By default, the save interval is set to 0 (minutes).

You can aso configure the save intervals for the DSI queue and the
materialization queue for alogical connection. See “ Configuring logical
connection save intervals’ on page 530 for details.

Backing up the RSSDs

If you cannot recover an RSSD’s most recent state, RSSD recovery can be
complex. The procedure you use depends on how much RSSD activity there
has been since the last dump. See Table 19-3 on page 649 for alist of possible
recovery procedures.

You should perform a dump of your RSSDs following any replication DDL,
such as changing routes or adding subscriptions.

Creating coordinated dumps

636

When you must recover a primary database by restoring backups, you must
also make sure that replicate datain the affected databases at other sitesis
consistent with the primary data. To provide for consistency after arestore on
multiple data servers, Replication Server provides a method for coordinating
database dumps and transaction dumps at all sitesin areplication system.

You initiate a database dump or transaction dump from the primary database.
RepAgent retrieves the dump record from the log and submitsit to Replication
Server so that the dump request can be distributed to the replicate sites. The
method ensures that all of the data can be restored to a known point of
consistency.

You can only use a coordinated dump with databases that store either primary
data or replicated data but not both. You initiate a coordinated dump from
within a primary database.

Replication Server

CHAPTER 19 Replication System Recovery

The process for coordinating dumps works as follows:

* Ineach function-string class assigned to the databases involved, the
Replication System Administrator at each site creates function strings for
the rs_dumpdb and rs_dumptran system functions. The function strings
should call stored procedures that execute the dump database and dump
transaction or equivaent commands and update the rs_lastcommit system
table. Refer to the Replication Server Reference Manual for examples.

* Youmust beusing afunction-string class, such asaderived class, inwhich
you can create and modify function strings. See “Managing function-
string classes’ on page 450 for more information.

e Using the alter connection command, the Replication System
Administrator at each replicate site configures the Replication Serversto
enable a coordinated dump.

« Whenadumpisstarted in aprimary database, the RepAgent transfersthe
dump database or dump transaction log record to the Replication Server.

¢ Replication Server distributes an rs_dumpdb or rs_dumptran function call
to sites that have subscriptions for the replicated tables in the database.

e Thers_dumpdb and rs_dumptran function strings at the replicate sites
execute the customized stored procedures at each replicate site.

Recovering from partition loss or failure

Administration Guide

When aReplication Server detects afailed or missing partition, it shuts down
the stable queues that are using the partition and logs messages about the
failure. Restarting Replication Server does not correct the problem. You must
drop the damaged partition and rebuild the stable queues.

Compl ete recovery depends on the volume of messages cleared from the queue
and on how soon you apply the recovery procedure after the failure occurs. If
aReplication Server maintains minimal latency in the replication system, only
the most recent messages are lost when its queues are rebuilt.

If apartition failsin aprimary Replication Server, you can usually resend lost
messages from their source using an off-line database log. If partitionsfail in a
replicate Replication Server, you need to recover from the stable queue of the
upstream Replication Server.

637

Recovering from partition loss or failure

In some cases, using an off-linelog may be the only way you can recover your
messages. If the Replication Server has suspended routes or connections, or if
anetwork or data server connection goes down, a backlog may have
accumulated in the Replication Server’s stable queues. Unless you have
specified a save interval setting that can cover the backlog, your chance of
recovering these messages decreases with time. Source Replication Servers
may have already deleted messages from their stable queues and may have
truncated the database logs.

Note For details on setting and displaying the save interval for recovery
purposes, see “Recovering from partition loss or failure” on page 637.

Table 19-2 summarizes when to use and where to locate the appropriate
recovery procedure for partition loss or failure.

Table 19-2: Overview of symptoms and procedures

Symptom Use this procedure

Replication Server detects|ost, damaged, or failed stable “Procedure for recovering from partition loss or
queue. failure” on page 638.

Message |oss occurred because abacklog existed inthe “Message recovery from off-line database ogs’
failed Replication Server and there were insufficient on page 640.

messages saved at the previous site.

In addition to message | oss, database logs have been Use “ Truncated message recovery from the
truncated. Either the secondary truncation pointisinvalid database log” on page 643 to recover the

or the dbcc settrunc('Itm’, 'ignore’) command, was database log. Then use “ Message recovery from
executed to truncate log records that have not been off-line database logs” on page 640 to rebuild
transferred by RepAgent to the Replication Server. the stable queues and recover lost messages.

Procedure for recovering from partition loss or failure

To recover from Replication Server partition loss or failure, perform the
following steps:

1 Loginto the Replication Server and drop the failed partition:
drop partition logical name

Replication Server does not immediately drop a partition that wasin use.
If the partition is undamaged, Replication Server dropsit only after al of
the messages it holds are delivered and deleted.

Refer to “drop partition” in Chapter 3, “Replication Server Commands,”
in the Replication Server Reference Manual for more information.

638 Replication Server

CHAPTER 19 Replication System Recovery

2 If thefailed partition wasthe only one available to the Replication Server,
add another one to replaceit:

add partition logical name
on 'physical name' with size size
[starting at vstart]

Refer to“add partition” in Chapter 3, “ Replication Server Commands,” in
the Replication Server Reference Manual for more information.

3 Sincethe partition is damaged, you must rebuild the stable queues:
rebuild queues

See “Rebuilding queues onling” on page 664 for a description of this
process.

When all stable queues on the partition are removed, Replication Server
dropsthefailed partition from the system and rebuilds the queues using the
remaining partitions.

4 After rebuilding the queues, check the Replication Server logs for loss
detection messages.

See “Loss detection after rebuilding stable queues’ on page 666 for
background and details.

5 If Replication Server detected message loss, you can:

e Perform “Message recovery from off-line database logs’ on page
640, or

¢ Request that Replication Server ignore the loss by executing the
ignore loss command for the database on the Replication Server where
the loss was detected.

Note If you specify that Replication Server ignore message losses and you
have rebuilt the queues of a Replication Server that is part aroute, you must re-
create subscriptions at the destination or use the rs_subcmp program with the -
r flag to reconcile primary and replicate data.

Administration Guide 639

Recovering from partition loss or failure

Message recovery from off-line database logs

640

If the online log does not contain all the data needed to recover, you must load
an older version of the primary database into a separate database and start
RepAgent for the database. Although RepAgent is accessing a different
database, it submits messages as if they were from the database whose
MEeSSages you are recovering.

To recover messages from off-line logs after a partition failure:
1 Restart Replication Server in standalone mode, using the -M flag.
2 Loginto the Replication Server, and enter:

rebuild queues

See “Rebuilding queues onling” on page 664 for a description of this
process.

3 Ingspect the Replication Server logs at each site for “ Checking Loss’
messages.

See “Determining which dumpsto load” on page 673 for background and
details on examining these messages.

4 Usethedate and timein the error log messages to determine which dumps
to load.

5 Enable RepAgent for atemporary recovery database, using the
sp_config_rep_agent System procedure.

sp_config rep agent temp dbname, 'enable', \
'rs name', 'rs user name', 'rs password'

See" Setting Replication Server configuration parameters’ on page 99 for
information about configuring RepAgent.

6 Load the database dump and the first transaction log dumpinto a
temporary recovery database.

7 Sart RepAgent in recovery mode for the temporary database:

sp_start _rep agent temp dbname, 'for recovery', \
'connect _dataserver', 'connect database', \
'rs_name', 'rs_user name', 'rs_password'

where “ connect_dataserver” and “ connect_database” specify the
original primary data server and database.

Replication Server

CHAPTER 19 Replication System Recovery

Administration Guide

10

11

RepAgent transfers data in the transaction log of the temporary recovery
database to the original primary database. When RepAgent completes
scanning the transaction log, it shuts down.

Verify that RepAgent has replayed the transaction log of the temporary
database. Use either of these methods:

e Check the Adaptive Server log for amessage similar to thefollowing:

Recovery of transaction log is complete. Please
load the next transaction log dump and then start
up the Rep Agent Thread with sp start rep agent,
with ‘for recovery’ specified.

Then, perform the appropriate actions.

e From Adaptive Server, execute the sp_help_rep_agent system
procedure for recovery:

sp_help_rep_ agent dbname, 'recovery'

This procedure displays RepAgent’s recovery status. If the recovery
statusis*not running” or “end of log,” then recovery iscomplete. You
can load the next transaction log dump. If the recovery statusis
“initia” or “scanning,” either the log has not been replayed, or the
replay is not complete.

If you have performed another recovery procedure since you performed
the last database dump, you may need to change the database generation
number after loading atransaction log dump. See “ Determining database
generation numbers’ on page 674.

If there are more transaction log dumps to load, repeat the following three
steps for each dump:

a Loadthenext transaction log dump. (Be sureto load the dumpsin the
correct order.)

b Restart RepAgent in recovery mode.

¢ Watch the Adaptive Server log for the completion message or use
sp_help_rep_agent.

Check the Replication Server logs for loss detection messages.

No losses should be detected unless you failed to load the database to a
state old enough to retrieve al of the messages.

See “Loss detection after rebuilding stable queues’ on page 666 for
background and details.

641

Recovering from truncated primary database logs

12 Restart the Replication Server in normal mode.

13 Restart RepAgent for the original primary data server and databasein
normal mode.

Message recovery from the online database log

To recover messages that are still in the online log at the primary database,
perform the following steps:

1 Stop al client activity.
2 Restart RepAgent for the primary database in recovery mode.

This process causes RepAgent to scan the log from the beginning so that
it retrieves all messages.

Recovering from truncated primary database logs

642

This section describes how to recover from failures caused by truncating a
primary transaction log before Replication Server has received the messages.

This situation typically occursif RepAgent, a Replication Server (managing a
primary database), or a network between them is down for along time and
RepAgent or Replication Server is unableto read records from the transaction
log. The secondary truncation point cannot be moved, which prevents
Adaptive Server from truncating the log and causes the transaction log of the
primary database to fill up. You must then disable RepAgent by executing
sp_config_rep_agent with the disable option turned on.

When afailed component returns to service, messages are missing at the
Replication Server. Depending on the status of thelost messages, use one of the
following procedures:

¢ If messages are till in the online log at the primary database (whichis
unlikely), see “Message recovery from the online database log” on page
642.

* If messages have been truncated from the online database |og, see
“Truncated message recovery from the database log” on page 643.

Replication Server

CHAPTER 19 Replication System Recovery

Truncated message recovery from the database log

In this procedure, you must |oad a previous database dump and transaction log
dumps into atemporary recovery database. Then connect a RepAgent to that
database to transmit the truncated log to the Replication Server. After the
missing log records are recovered, you can restart the system using the regular
primary database.

Using atemporary recovery database permits transaction recovery from clients
that continued to use the primary database after its log was truncated.

Note Use thetemporary database exclusively for recovering messages. Any
modification to the database preventsyou from | oading the next transaction log
dump. Also limit the activity on the original primary database so that the
recovery can be completed before the transaction log on the original primary
database must be dumped and truncated again.

To replay off-line transaction logs, follow these steps:

1 Create atemporary database such that the sysusages tables are similar in
both the original and the temporary databases. To do this, you must usethe
same sequence of create database and alter database commands when
creating the temporary database as were used to create the original
database.

2 Shut down Replication Server.
Restart Replication Server in standalone mode, using the -M flag.

4 Logintothe Replication Server and execute the set log recovery command
for each primary database you are recovering.

See “ Setting log recovery for databases’ on page 671.

Thiscommand putsthe Replication Server into loss detection modefor the
databases. Replication Server logs a message similar to the following:

Checking Loss for DS1.PDB from DS1.PDB
date=Nov-01-1995 10:35am
gid=0x01234567890123456789

Administration Guide 643

Recovering from truncated primary database logs

644

10

Execute the allow connections command to allow Replication Server to
accept connections only from other Replication Servers and from
RepAgents in recovery mode.

Note If you attempt to connect to this Replication Server by automatically
restarting RepAgent in norma mode with scripts, the Replication Server
rejectsthe connection. You must restart RepAgent in recovery mode while
pointing to the correct off-line log. This step alows you to resend old
transaction logs before current transactions are processed.

L oad the database dump into the temporary primary database.

Load the first or next transaction log dump into the temporary primary
database.

Start the RepAgent for the temporary database in recovery mode:

sp_start rep agent temp dbname, 'recovery',
'connect dataserver', 'connect database',
'repserver name', 'repserver username',
'repserver password'

where connect_dataserver and connect_database specify the origina
primary data server and database.

RepAgent transfers datain the transaction log of the temporary recovery
database to the origina primary database. When RepAgent completes
scanning the current transaction log, it shuts down.

Verify that RepAgent has replayed the transaction log of the temporary
database.

a Check the Adaptive Server log for the following message:

Recovery of transaction log is complete. Please
load the next transaction log dump and then start
up the Rep Agent Thread with sp start rep agent,
with ‘recovery’ specified.

and perform the appropriate actions, or
b Execute admin who_is_down.

If the RepAgent reports “down,” load the next transaction log.
Repeat steps 7 through 9 until all transaction logs have been processed.

You are now ready to resume normal replication from the primary
database.

Replication Server

CHAPTER 19 Replication System Recovery

11
12

13
14

15

Shut down Replication Server, which is till in standalone mode.
Execute the following commands:

rs_zeroltm data server, database
dbcc settrunc('ltm', 'valid')

Note You may need to executers_zeroltm to clear the locator information.

Restart Replication Server in normal mode.

Restart RepAgent for both the primary database and RSSD using
Sp_start_rep_agent.

If you have performed another recovery procedure since you performed
the last database dump, you may need to change the database generation
number after loading a transaction log dump. See “ Determining database
generation numbers’ on page 674.

Recovering from primary database failures

Most database failures are recovered without losing any committed
transactions. No special Replication Server recovery procedureis needed if the
database recovers on restart—Replication Server performs a handshake with
the database, ensuring that no transactions are lost or duplicated in the
replication system.

Administration Guide

If aprimary database fails and you are unable to recover all committed
transactions, you must |oad the database to a previous state and follow a
recovery procedure designed to restore consistency at the replicate sites.

Here are two possible scenarios for recovering from primary database failures:

Recovering with coordinated dumps

If you have coordinated dumps of primary and replicate databases, you can
use them to load all databases in the replication system to a consistent
state.

See“Loading from coordinated dumps’ on page 646 for details.

Recovering with primary dumps only

645

Recovering from primary database failures

If you do not have coordinated dumps, you can load the failed primary
database and then verify the consi stency of thereplicate databaseswith the
restored primary database.

See “Loading a primary database from dumps’ on page 647 for details.

Loading from coordinated dumps

Use this procedure only if you have coordinated dumps of both primary and
replicate databases. To load a primary database and al replicate databases to
the same state, follow this procedure:

646

1

Perform steps 1 through 15 from “Loading a primary database from
dumps’ on page 647.

Suspend connections to the replicate databases that must be restored.

For each replicate database, log in to its managing Replication Server and
execute the suspend connection command:

suspend connection to data server.database

L oad the replicate databases from the coordinated dumps that correspond
to the restored primary database state.

For each replicate database, |og in to its managing Replication Server and
execute a sysadmin set_dsi_generation command to set the generation
number for the database to the same generation number used in step 1:

sysadmin set dsi generation, 101,
primary data server, primary database,
replicate data server, replicate database

The parameters primary_data_server and primary_database specify the
primary database for |oading. The parameters replicate_data_server and
replicate_database specify the replicate database for |oading.

Setting the generation numbers in this manner prevents Replication
Servers from applying to the replicate databases any old messages that
may be in the queues.

For each replicate database, log in to its managing Replication Server and
execute the resume connection command to restart the DSI for the
database:

resume connection to data server.database

Restart the primary Replication Server in normal mode.

Replication Server

CHAPTER 19 Replication System Recovery

8

Restart RepAgent for the primary database in normal mode.

Note If any subscriptions were materializing when the failure occurred, drop
them and re-create them.

Loading a primary database from dumps

Use this procedure if you are loading only a primary database in areplication
system. Toload the database to a previous state and resolve any inconsistencies
with replicate databases, follow this procedure:

Administration Guide

1

Logintothe primary Replication Server and use the admin get_generation
command to get the database generation number for the primary database:

admin get generation, data server, database
Write down the generation number so you have it for step 7.

Shut down the RepAgent for the primary database. To do this execute
sp_stop_rep_agent system procedure.

sp_stop_rep agent database
Suspend the DSI connection to the primary database (for exclusive use).
L oad the database to the most recent or previous state.

Thisstep entailsloading the most recent database dump and all subsequent
transaction log dumps.

Refer to the Adaptive Server Enterprise System Administration Guide for
instructions.

Resume the DSI connection.
Enter the following commands to dump the transaction log:

use database

go

dbcc settrunc('ltm', 'ignore')

go

dump tran database with truncate_only
go

dbcc settrunc('ltm', 'valid')

go

647

Recovering from RSSD failure

7 Executethedbcc settrunc command in the restored primary database to set
the generation number to the next higher number. For example, if the
admin get_generation command in step 1 returned O, enter the following
commands:

use database
go
dbcc settrunc('ltm', 'gen_id', 1)
8 Runthefollowing command to clear the locator information:

rs_zeroltm data server, database

9 Start RepAgent for the primary database. To do this, execute the following
command:

sp_start_rep_ agent database

10 Runthers_subcmp program for each subscription at the replicate sites.
Use the -r flag to reconcile the replicate data with the restored primary
data, or drop all the subscriptions and re-create them.

See Chapter 11, “Managing Subscriptions” in the Replication Server
Administration Guide Volume 1 for more information on using rs_subcmp.
Also refer to Chapter 7, “ Executable Programs,” in the Replication Server
Reference Manual for more information about rs_subcmp command.

Recovering from RSSD failure

648

If you cannot recover the RSSD’s most recent database state, recovering from
an RSSD failureis a complex process. In this case, you must load the RSSD
from old database dumps and transaction log dumps.

The procedure for recovering an RSSD is similar to that for recovering a
primary database. However, it requires more steps, since the RSSD holds
information about the replication system itself. RSSD system tables are closely
associated with the state of the stable queues and of other RSSDs in the
replication system.

If aReplication Server’s RSSD has failed, you first need to determine the
extent of recovery required. To do this, perform one or more of the following
actions:

Replication Server

CHAPTER 19 Replication System Recovery

¢ When the RSSD becomes available, log in to the Replication Server and
execute admin who_is_down. Some Replication Server threads may have
shut down during the RSSD’s period of inactivity.

e If an SQM thread for an inbound or outbound queue or an RSI
outbound queue is down, restart the Replication Server.

* If aDSI thread is down, resume the connection to the associated
database.

* If an RSl thread isdown, resume the route to the destination database.

RSM - For instructions on viewing thread status in Sybase Central, see
“Viewing thread status” in Replication Server’s plug-in help.

e Check al connecting RepAgentsto seeif they are running with the
sp_help_rep_agent system procedure. (RepAgents may have shut downin
response to errors resulting from RSSD shutdown.) Restart them if
necessary.

¢ If you cannot recover the RSSD’s most recent database state, you must
load it from old database dumps and transaction log dumps. See
“Recovering an RSSD from dumps” on page 649.

Recovering an RSSD from dumps

The procedure you use to recover an RSSD depends on how much RSSD
activity there has been since the last RSSD dump. There are four increasingly
severelevelsof RSSD failure, with corresponding recovery requirements. Use
Table 19-3 to locate the RSSD recovery procedure you need.

Table 19-3: Recovering from RSSD failures

Activity since last RSSD dump Use this procedure

No DDL activity “Basic RSSD recovery procedure” on page 650
DDL activity, but no new routes or subscriptionscreated “ Subscription comparison procedure” on page 652
DDL activity, but no new routes created “Subscription re-creation procedure” on page 659
New routes created “Deintegration/reintegration procedure” on page 662

Administration Guide 649

Recovering from RSSD failure

Basic RSSD recovery procedure

650

Use the basic RSSD recovery procedure to restore the RSSD if you have
executed no DDL commands since the last RSSD dump. DDL commandsin
RCL include those for creating, altering, or deleting routes, replication
definitions, subscriptions, function strings, functions, function-string classes,
or error classes.

Certain steps in this procedure are also referenced by other RSSD recovery
procedures in this chapter.

Warning! Do not execute any DDL commands until you have completed this
recovery procedure.

To perform basic RSSD recovery, follow these steps:
1 Shut down all RepAgentsthat connect to the current Replication Server.

2 Sinceits RSSD hasfailed, the current Replication Server is down. If for
some reason it isnot down, log in to it and use the shutdown command to
shut it down.

Note Some messages may still beinthe Replication Server stable queues.
Datain those queues may be lost when you rebuild these queues in later

steps.

3 Restore the RSSD by loading the most recent RSSD database dump and
all transaction dumps.

4 Restart the Replication Server in standalone mode, using the -M flag.

You must start the Replication Server in standal one mode, because the
stable queues are now inconsistent with the RSSD state. When the
Replication Server starts in standalone mode, reading of the stable queues
is not automatically activated.

5 Loginto the Replication Server, and get the generation number for the
RSSD, using the admin get_generation command:

admin get generation, data server, rssd name

For example, the Replication Server may return a generation number of
100.

6 IntheReplication Server, rebuild the queueswith thefollowing command:

rebuild queues

Replication Server

CHAPTER 19 Replication System Recovery

Administration Guide

10

See “Rebuilding queues onling” on page 664 for a description of this
process.

Start all RepAgents (except the RSSD RepAgent) that connect to the
current Replication Server in recovery mode.

Wait until each RepAgent logs a message in the Adaptive Server log that
it is finished with the current log.

Check the loss messages in the Replication Server log, and in the logs of
al the Replication Servers with direct routes fromthe current Replication
Server.

« If al your routes were active at the time of failure, you probably will
not experience any real dataloss.

* However, loss detection may indicate real 1oss. Real dataloss may be
detected if the database |ogs were truncated at the primary databases,
so that the rebuild process did not have enough information to
recover. If you have real dataloss, reload database logs from old
dumps. See “Recovering from truncated primary database logs’ on
page 642.

e See“Loss detection after rebuilding stable queues’ on page 666 for
background and details on loss detection.

Shut down RepAgents for al primary databases managed by the current
Replication Server.

Executethedbcc settrunc command at the Adaptive Server for therestored
RSSD. Move up the secondary truncation point.

use rssd name

go
dbcc settrunc('ltm', 'ignore'

dump tran rssd_name with truncate_only
go

begin tran commit tran

go 40

Note The begin tran commit tran go 40 command moves the Adaptive
Server log onto the next page.

After completing step 10 and before continuing with step 11, run the
following command to clear the locater information.

rs_zeroltm rssd server, rssd name
go

651

Recovering from RSSD failure

11 Executethedbcc settrunc command at the Adaptive Server for the restored
RSSD to set the generation number to one higher than the number returned
by admin get_generation in step 5.

dbcc settrunc('ltm', 'valid')
go

Make arecord of this generation number and of the current time, so that
you can return to this RSSD recovery procedure, if necessary. Or, you can
dump the database after setting the generation number.

12 Restart the Replication Server in normal mode.

If you performed this procedure as part of the subscription comparison or
subscription re-creation procedure, the upstream RSI outbound queue may
contain transactions, bound for the RSSD of the current Replication
Server, that have already been applied using rs_subcmp. If thisisthe case,
after starting the Replication Server, the error log may contain warnings
referring to duplicate inserts. You can safely ignore these warnings.

13 Restart RepAgentsfor the RSSD and for user databases in normal mode.

If you performed this procedure as part of the subscription comparison or
subscription re-creation RSSD recovery procedure, you should expect to
see messages regarding RSSD losses being detected in all Replication
Serversthat have routes from the current Replication Server.

Subscription comparison procedure

652

Follow this RSSD recovery procedure if you have executed some DDL
commands since the last transaction dump but you have not created any new
subscriptions or routes. DDL commands in RCL include those for creating,
atering, or deleting routes, replication definitions, subscriptions, function
strings, functions, function-string classes, or error classes.

Warning! Do not execute any DDL commands until you have completed this
recovery procedure.

Following this procedure makes the failed RSSD consistent with upstream
RSSDs or consistent with the most recent database and transaction dumps (if
there is no upstream Replication Server). It then makes downstream RSSDs
consistent with the recovered RSSD.

Replication Server

CHAPTER 19 Replication System Recovery

If DDL commands have been executed at the current Replication Server since
the last transaction dump, you may have to re-execute them.

Warning! This procedure may fail if you are operating in a mixed-version
environment; that is, the Replication Serversin your replication system are not
all at the same version level.

To restore an RSSD with subscription comparison, follow these steps:

1 To preparethe failed RSSD for recovery, perform steps 1 through 4 of
“Basic RSSD recovery procedure” on page 650.

2 To prepare al upstream RSSDs for recovery, execute the admin
quiesce_force_rsi command at each upstream Replication Server.

e Thisstep ensuresthat all committed transactions from the current
Replication Server have been applied before you execute the
rs_subcmp program.

« Execute this command sequentialy, starting with the Replication
Server that is furthest upstream from the current Replication Server.

¢ Make sure that RSSD changes have been applied, that is, that the
RSSD DSI outbound queues are empty.

¢ TheReplication Server that is directly upstream from the current
Replication Server cannot be quiesced.

3 To prepare al downstream RSSDs for recovery, execute the admin
quiesce_force_rsi command at each downstream Replication Server.

e Thisstep ensuresthat all committed transactions bound for the current
Replication Server have been applied before you execute the
rs_subcmp program.

« Executethiscommand sequentially, starting with Replication Servers
that areimmediately downstream from the current Replication Server.

¢ Make sure that RSSD changes have been applied, that is, that the
RSSD DSI outbound queues are empty.

4 Reconcilethefailed RSSD with all upstream RSSDs, using thers_subcmp
program.

« First execute rs_subcmp without reconciliation to get an idea of what
operations it will perform. When you are ready to reconcile, use the
-r flag to reconcil e the replicate data with the primary data.

Administration Guide 653

Recovering from RSSD failure

654

You must execute rs_subcmp as the maintenance user. See Chapter 8,
“Managing Replication Server Security” for moreinformation on the
mai ntenance user.

In each instance, specify the failed RSSD as the replicate database.

In each instance, specify the RSSD of each upstream Replication
Server asthe primary database.

Start with the furthest upstream Replication Server, and proceed
downstream for al other Replication Servers with routes (direct or
indirect) to the current Replication Server.

Reconcile each of the following RSSD system tables: rs_articles,
rs_classes, rs_columns, rs_databases, rs_erroractions, rs_functions,
rs_funcstrings, rs_objects, rs_publications, rs_systext, and
rs_whereclauses.

When you execute rs_subcmp on replicated RSSD tables, the where
and order by clauses of the select statement must include all rows to
be replicated. See “Using rs_subcmp on replicated RSSD system
tables” on page 655 for more information.

The failed RSSD should now be recovered.

Reconcile all downstream RSSDs with the RSSD for the current
Replication Server, which was recovered in the previous step, using the
rs_subcmp program.

First execute rs_subcmp without reconciliation to get an idea of what
operationsit will perform. When you are ready to reconcile, use the -
r flag to reconcile the replicate data with the primary data.

You must execute rs_subcmp as the maintenance user. See Chapter 8,
“Managing Replication Server Security” for moreinformation on the
mai ntenance user.

In each instance, specify asthe primary database the recovered RSSD.

In each instance, specify as the replicate database the RSSD of each
downstream Replication Server.

Start with the Replication Servers that are immediately downstream,
then proceed downstream for all other Replication Serverswith routes
(direct or indirect) from the current Replication Server.

Replication Server

CHAPTER 19 Replication System Recovery

« Reconcile each of the following RSSD system tables: rs_articles,
rs_classes, rs_columns, rs_databases, rs_erroractions, rs_functions,
rs_funcstrings, rs_objects, rs_publications, rs_systext, and
rs_whereclauses.

¢ When you execute rs_subcmp on replicated RSSD tables, the where
and order by clauses of the select statement must select all rowsto be
replicated. See“Using rs_subcmp on replicated RSSD system tables’
on page 655 for more information.

All downstream RSSDs should now be fully recovered.

6 If therecovering Replication Server isan ID Server, you must restore the
Replication Server and database IDsin its RSSD.

a For every Replication Server, check thers_databases and rs_sites
system tables for their IDs.

b Insert the appropriate rows in the recovering RSSD’s rs_idnames
system table if they are missing.

¢ Deletefrom the recovering RSSD’srs_idnames system table any IDs
of databases or Replication Servers that are no longer part of the
replication system.

d Toensurethat thers_ids system tableis consistent, execute the
following stored procedure in the RSSD of the current Replication
Server:

rs mk rsids consistent

7 If therecovering Replication Server isnot an ID Server, and a database
connection was created at the recovering Replication Server after the last
transaction dump, delete the row corresponding to that database
connection from the rs_idnames system tablein the ID Server’s RSSD.

8 Perform steps 5 through 13 of “Basic RSSD recovery procedure” on page
650.

9 Tocomplete RSSD recovery, re-execute any DDL commands executed at
the current Replication Server since the last transaction dump.

Using rs_subcmp on replicated RSSD system tables

When executing rs_subcmp on replicated RSSD tables during RSSD recovery
procedures, formulate the where and order by clauses of the select statement to
select al rows that must be replicated for each system table.

Administration Guide 655

Recovering from RSSD failure

Table 19-4 illustrates the general form of these select statements.

Note You may need to adjust these select statements in a mixed-version
environment.

Table 19-4: select statements for rs_subcmp procedure

RSSD table

name select statement

rs_articles select * from rs_articleswhere prsid in sub_select order by primary_key

rs_classes select * from rs_classes where prsid in sub_select order by primary_keys

rs_columns select * from rs_columns where prsid in sub_select and rowtype = 1 order by primary_keys

rs_databases

select * from rs_databases where prsid in sub_select and rowtype = 1 order by primary_keys

rs_erroractions

select * from rs_erroractions where prsid in sub_select order by primary_keys

rs_funcstrings

select * from rs_funcstrings where prsid in sub_select and rowtype = 1 order by
primary_keys

rs_functions

select * from rs_functionswhere prsid in sub_select and rowtype = 1 order by primary_keys

rs_objects

select * from rs_objects where prsid in sub_select and rowtype = 1 order by primary_keys

rs_publications

select * from rs_publications where prsid in sub_select order by primary_key

rs_systext

select * from rs_systext where prsid in sub_select and texttypein ('O, 'S) order by
primary_keys

rs_whereclauses

select * from rs_whereclauses where prsid in sub_select order by primary_key

656

In the select statementsin Table 19-4, sub_select represents the following sub-
selection statement, which selects al site IDs that are the source Replication
Serversfor the current Replication Server:

(select source rsid from rs_routes
where
(through rsid = PRS site ID
or through rsid = RRS site ID)
and
dest_rsid = RRS site ID)

where PRS site ID isthe site ID of the Replication Server managing the
primary RSSD, and RRS site ID isthesite ID of the Replication Server
managing the replicate RSSD for the rs_subcmp operation.

For the rs_columns, rs_databases, rs_funcstrings, rs_functions, and rs_objects
system tables, if rowtype = 1, then the row isareplicated row. Only replicated
rows need be compared using rs_subcmp.

For each system table, the primary_keys are its unique indexes.

Replication Server

CHAPTER 19 Replication System Recovery

Classes and system tables

Example

Administration Guide

The system-provided function-string classes and error class do not initially
have a designated primary site, that is, their site ID equals 0. The classes
rs_default_function_class and rs_db2_function_class cannot be modified, and
thus can never have a designated primary site. The classes
rs_sqlserver_function_class and rs_sqlserver_error_class may be assigned a
primary site and modified. The primary site of a derived function-string class
isthe same as its parent class.

If the recovering Replication Server was made the primary site for afunction-
string class or error class since the last transaction dump, the rs_subcmp
procedure described earlier in this section would find orphaned rowsin
downstream RSSDs.

In that event, run rs_subcmp again on the rs_classes, rs_erroractions,
rs_funcstrings, and rs_systext system tables. Set prsid = 0 in order to repopulate
these tableswith the necessary default settings. For example, usethefollowing
select statement for thers_classes table:

select * from rs classes where prsid = 0
order by primary keys

Suppose you have the following Replication Server sitesin your replication
system, wherean arrow (—) indicatesaroute. Site B isthefailed site, and there
are no indirect routes.

« A>B
« C>B
e C>D
« B>E

These Replication Servers have the following site IDs:
« A=1

1
a N W N

m O O W
1l

657

Recovering from RSSD failure

In this example, to bring the RSSDs to a consistent state, you would perform
the following tasks, in the order presented, on thers_classes, rs_columns,
rs_databases, rs_erroractions, rs_funcstrings, rs_functions, rs_objects, and
rs_systext system tables.

Reconciling with upstream RSSDs

1 Runrs_subcmp against the above tables, specifying site B asthe replicate
and site A asthe primary, with prsid = 1in the where clauses. For example,
the select statement for rs_columns should look like the following:

select * from rs_columns where prsid in
(select source_rsid from rs_routes
where
(through rsid = 1 or through rsid = 2)
and dest rsid = 2)
and rowtype = 1
order by objid, colname

2 Runrs_subcmp against the above tables, specifying site B asthereplicate
and site C asthe primary, with prsid = 3in thewhere clauses. For example,
the select statement for rs_columns should look like the following:

select * from rs_columns where prsid in
(select source_rsid from rs_routes
where
(through rsid = 3 or through rsid = 2)
and dest rsid = 2)
and rowtype = 1
order by objid, colname

Reconciling downstream RSSDs
1 Runrs_subcmp against the above tables, specifying site B as the primary
and site E asthereplicate, with prsid = 2 in thewhere clauses. For example,
the select statement for rs_columns should look like the following:

select * from rs_columns where prsid in
(select source rsid from rs_routes
where
(Ehrough rsid = 2 or through rsid = 5)
and dest rsid = 5)
and rowtype = 1
order by objid, colname

658 Replication Server

CHAPTER 19 Replication System Recovery

Refer to “rs_subcmp” in Chapter 7, “Programs,” in the Replication Server
Reference Manual for more information on rs_subcmp. Refer to Chapter 8,
“Replication Server System Tables,” in the Replication Server Reference
Manual for more information on the RSSD system tables.

Subscription re-creation procedure

Administration Guide

Follow thisRSSD recovery procedureif you have created new subscriptions or
other DDL since the last transaction dump, and you have not created new
routes. DDL commandsin RCL include thosefor creating, atering, or deleting
routes, replication definitions, subscriptions, function strings, functions,
function-string classes, or error classes.

Warning! Do not execute any DDL commands until you have completed the
subscription re-creation recovery procedure.

Aswith the subscription-comparison RSSD recovery procedure, following this
procedure makesthefailed RSSD consistent with upstream RSSDs or with the
most recent database and transaction dumps (if there is no upstream
Replication Server). It then makes downstream RSSDs consistent with the
recovered RSSD.

Inthisprocedure, however, you also either delete or re-create subscriptionsthat
arein limbo due to the loss of the RSSD.

If DDL commands have been executed at the current Replication Server since
the last transaction dump, you may have to reexecute them.

To restore an RSSD that requires that lost subscriptions be re-created, follow
these steps:

1 To prepare the failed RSSD for recovery, perform steps 1 through 4 of
“Basic RSSD recovery procedure” on page 650.

2 To prepare the RSSDs of all upstream and downstream Replication
Servers for recovery, perform step 2 through 3 of “ Subscription
comparison procedure” on page 652.

3 Shut down all upstream and downstream Replication Servers affected by
the previous step. Use the shutdown command.

4 Restart al upstream and downstream Replication Serversin standalone
mode, using the -M flag.

659

Recovering from RSSD failure

660

10

n

All RepAgents connecting to these Replication Servers shut down
automatically when you restart the Replication Serversin standalone
mode.

To reconcile the failed RSSD with all upstream RSSDs, perform step 4 of
“ Subscription comparison procedure” on page 652.

The failed RSSD should now be recovered.

To reconcile all downstream RSSDs with the RSSD for the current
Replication Server, perform step 5 of “ Subscription comparison
procedure” on page 652.

If the recovering Replication Server isan ID Server, to restore the IDs in
its RSSD, perform step 6 of “ Subscription comparison procedure” on
page 652.

If the recovering Replication Server isnot an ID Server and a database
connection was created at the recovering Replication Server after the last
transaction dump, perform step 7 of “ Subscription comparison procedure”
on page 652.

Query the rs_subscriptions system table of the current Replication Server
for the names of subscriptions and replication definitions or publications
and their associated databases.

¢ Alsoquery al Replication Servers with subscriptionsto primary data
managed by the current Replication Server, or with primary datato
which the current Replication Server has subscriptions.

¢ You can query the rs_subscriptions system table by using the
rs_helpsub stored procedure.

For each user subscriptionin thers_subscriptions system table, execute the
check subscription command using the information obtained in step 9.

¢ Execute thiscommand at the current Replication Server and at all
Replication Servers with subscriptions to primary data managed by
the current Replication Server, or with primary data to which the
current Replication Server has subscriptions.

e Subscriptions with a status other than VALID must be deleted or re-
created, as described below.

For each Replication Server that has a non-VALID subscription with the
current Replication Server as the primary:

¢ Noteitssubid, and delete the appropriate row from the primary
rs_subscriptions System table.

Replication Server

CHAPTER 19 Replication System Recovery

Administration Guide

12

13

e Usethesubid from rs_subscriptions to find corresponding rowsin the
rs_rules system table, and also delete those rows.

For each system table, rs_subscriptions and rs_rules:

e If asubscriptionisin the primary table and not in the replicate table
(because it was dropped), delete the subscription row from the
primary table.

e If asubscription isin the replicate table and not in the primary table,
delete the subscription row from the replicate table. After completing
the rest of this procedure, re-create the subscription, as described in
steps 17 through 19.

e If asubscription isin both the primary and replicate tables but is not
VALID at one of the sites, delete the rows from both tables. After
completing the rest of this procedure, re-create the subscription, as
described in steps 17 through 19.

For each primary Replication Server for which the current Replication
Server has anon-VALID user subscription:

¢ Noteits subid, and delete the appropriate row from the primary
rs_subscriptions System table.

e Usethesubid from rs_subscriptions to find corresponding rowsin the
rs_rules system table, and also delete those rows.

For each system table, rs_subscriptions and rs_rules:

e If asubscription isin the primary table and not in the replicate table,
delete the subscription row from the primary table. After completing
the rest of this procedure, re-create the subscription, as described in
steps 17 through 19.

e If asubscription isin the replicate table and not in the primary table
(because it was dropped), delete the subscription row from the
replicate table.

e If asubscription isin both the primary and replicate tables, but not
VALID at one of the sites, delete the rows from both tables. After
completing the rest of this procedure, re-create the subscription, as
described in steps 17 through 19.

At both the primary and replicate Replication Server, execute the sysadmin
drop_queue command for all existing materialization queues for
subscriptions deleted in steps 17 through 19.

661

Recovering from RSSD failure

14

15

16

17
18

19

Restart in normal mode al Replication Servers, and their RepAgents, that
had subscriptions to primary data managed by the current Replication
Server or with primary data to which the current Replication Server had
subscriptions.

Perform steps 5 through 13 of “ Basic RSSD recovery procedure” on page
650.

Reexecute any DDL commands that executed at the current Replication
Server since the last transaction dump.

Enable autocorrection for each replication definition.

Re-create the missing subscriptions using either the bulk materialization
method or no materialization.

Use the define subscription, activate subscription, validate subscription, and
check subscription commands for bulk materialization.

For each re-created subscription, restore consistency between the primary
and replicate datain either of two ways:

e Drop asubscription using the drop subscription command and the with
purge option. Then re-create the subscription.

e Usethers_subcmp program with the -r flag to reconcile replicate and
primary subscription data.

Refer to “rs_subcmp” in Chapter 7, “Programs,” in the Replication Server
Reference Manual for more information on the rs_subcmp program. Refer to
Chapter 8, “Replication Server System Tables,” in the Replication Server
Reference Manual for more information on the RSSD system tables.

Deintegration/reintegration procedure

If you created routes since the last time the RSSD was dumped, you are
required to perform the following tasks:

662

1

Remove the current Replication Server from the replication system.
See “Removing a Replication Server” on page 112 for details.
Reinstall the Replication Server.

Refer to the Replication Server installation and configuration guides for
your platform for complete information on re-installing Replication
Server.

Replication Server

CHAPTER 19 Replication System Recovery

3 Re-create Replication Server routes and subscriptions.

See Chapter 6, “Managing Routes” and Chapter 11, “Managing
Subscriptions” for details.

Recovery support tasks

This section describes standard recovery tasks that are required in performing
the recovery procedures described in this chapter. Use recovery tasks only for
the procedure to which they apply. These tasks support recovery by letting you
manipulate and identify critical datain the replication system.

Refer to this section for background in performing the recovery proceduresin
this chapter.

Table 19-5 lists the recovery support tasks.

Table 19-5: Overview of recovery support tasks

Recovery support task See

Rebuild stable queues “Rebuilding stable queues’ on page 663

Check for Replication Server |oss detection “Loss detection after rebuilding stable queues’ on page
messages after rebuilding stable queues 666

Put Replication Server in log recovery mode “Setting log recovery for databases’ on page 671

Check for Replication
messages after setting

Server |oss detection “L oss detection after setting log recovery” on page 672
log recovery for databases

Determine which dum,

ps and logs to load “Determining which dumps to load” on page 673

Adjust database generation numbers “Adjusting database generation numbers’ on page 674

Rebuilding stable

Administration Guide

queues

Therebuild queues command removes all existing queues and rebuildsthem. It
cannot rebuild individual stable queues.

You can rebuild queues online or off-line, depending on your situation.
Generally, you rebuild queues onlinefirst to detect if there arelost stable queue
messages. If there are lost messages, you can retrieve them by first putting the
Replication Server in standal one mode and recovering the datafrom an off-line
log.

663

Recovery support tasks

Both methods for rebuilding queues are described in more detail in the
following sections. Refer to “rebuild queues’ in Chapter 3, “ Replication Server
Commands,” in the Replication Server Reference Manual for more
information.

Rebuilding queues online

During the online rebuild process, the Replication Server isin normal mode.
All RepAgents and other Replication Servers are automatically disconnected
from the Replication Server. Connection attempts are rejected with the
following message:

Replication Server is Rebuilding

Replication Servers and RepAgentsretry connections periodically until rebuild
queues has completed. At thistime, the connections are successful.

When the queues are cleared, the rebuild is complete. The Replication Server
then attempts to retrieve the cleared messages from the following sources:

¢ Other Replication Serversthat have direct routesto the rebuilt Replication
Server. If you have set asave interval from other Replication Servers, you
have a greater likelihood of recovery.

e Database transaction logs for primary databases the Replication Server
manages.

If there are loss detection messages, you need to check the status of these
messages. Depending on the failure condition, if these messages are no longer
available at their source, you may need to rebuild the queues using off-line
logs. Or, you can request that Replication Server ignore the lost messages. See
“Rebuilding queues from off-line database logs’ on page 664 and “Loss
detection after rebuilding stable queues’ on page 666.

Rebuilding queues from off-line database logs

664

Thistask isused to recover datafrom off-line database logs. You use therebuild
queues command only after you have restarted the Replication Server in
standal one mode. For details on standalone mode, see “Using standal one
mode” on page 665. Executing rebuild queues in standalone mode puts
Replication Server in recovery mode.

In recovery mode, the Replication Server allows only RepAgentsin recovery
mode to connect. If a RepAgent that is not in recovery mode attempts to
connect, Replication Server rejectsit with following error message:

Replication Server

CHAPTER 19 Replication System Recovery

Rep Agent not in recovery mode

If you use a script that automatically restarts RepAgent and connectsit to the
Replication Server, you must start RepAgent using the for_recovery option.
RepAgents are not allowed to connect in norma mode.

Figure 19-2 illustrates the progression from normal mode to standalone mode
to recovery mode using the rebuild queues command.

Figure 19-2: Entering recovery mode with the rebuild queues command

Restart -M

Standalone
Mode

rebuild queues

Restart

Recovery Mode
Log recovery set
for all databases

f

RepAgent connect attempt

\ Reject

“Not in Recovery”

Using standalone mode
To start Replication Server in standalone mode, use the -M flag. Standalone
mode is useful for looking at the state of Replication Server because the state
is static. Standalone mode allows you to review the contents of the stable
gueues because no messages are being written to or read from the queues.

Standal one mode differs from Replication Server’s normal modein the
following ways:

Administration Guide 665

Recovery support tasks

No incoming connections are accepted. If any RepAgent or Replication
Server attemptsto connect to aReplication Server in standalone mode, the
message “ Replication Server isin Standalone Mode” is raised.

No outgoing connections are started. A Replication Server in standalone
mode does not attempt to connect to other Replication Servers.

No DSI threads are started, even if there are messages in the DSI queues
that have not been applied.

No Distributor (DIST) threads are started. A DIST thread reads messages
from the inbound queues, performs subscription resolution, and writes
messages to the outbound queues.

Loss detection after rebuilding stable queues

To determine if any messages could not be recovered after the stable queues
were rebuilt, the Replication Server performs loss detection. By checking
Replication Server |oss-detection messages, you can determine what kind of
user intervention, if any, is necessary to restore al datato the system.

666

Replication Server detects two types of |osses after rebuilding stable queues:

SQM loss, which refers to datalost between two Replication Servers,
detected at the next downstream site

DSl loss, which refers to data lost between a Replication Server and a
replicate database that the Replication Server manages

Both kinds of 1oss detection are addressed in the following sections.

Replication Server

CHAPTER 19 Replication System Recovery

If al dataisavailable, no intervention is necessary and the replication system
can returnto normal operations. For example, if you know that the saveinterval
for theroute or connectionisset for alonger length of timethan thefailure, you
can recover al messages with no intervention. However, if the saveinterval is
not set or is set too low, some messages may be |ost.

Note A Replication Server that has detected aloss does not accept messages
from the source. Loss detection prevents the source from truncating its stable
queues. For example, if Replication Server RS2 detects that replicate data

server DS2.RDB haslost datafrom primary data server DS1.PDB, Replication
Server RS1 cannot truncate its queues until you decide how to handle the loss.

Asaresult, RS1 may run out of stable storage. Before aloss is detected (that
is, after the “Checking Loss” message is reported), you can choose to ignore
losses for a source and destination pair.

SQM loss between two Replication Servers

Administration Guide

Every timeyou rebuild stable queues during arecovery procedure, Replication
Server requests backlogged messages from sites that send its distributions. If
the Replication Server manages primary databases, it instructstheir RepAgents
to send messages from the beginning of the online transaction logs. The

backl ogged messages repopul ate the emptied stable queues.

Replication Server enablesloss detection mode at those sitesyou arerebuilding
that have a direct route from the Replication Server. In Figure 19-3,
Replication Server RS3 detects lossesif you rebuild the queues of Replication
Server RS2. Similarly, RS2 detectslossesif you rebuild the queues of
Replication Server RSL.

667

Recovery support tasks

Figure 19-3: Replication system loss detection example

RS1 RS2 RS3

eS| Baics) maie) matil

Primary Replicate
Database T A L Database

RSM

SQM example

668

Y

RS1 RSSD RS2 RSSD RS3RSSD

When you execute the rebuild queues command at RS2, RS3 performs|oss
detection for all primary databases whose updates are routed to RS3 through
RS2. RS3 logs messages for each of these databases. If you rebuild queues at
RS3, no SQM loss detection is performed, because there are no routes
originating from RS3.

Replication Server detects loss by looking for duplicate messages. If RS3
receives a message that it had received before the rebuild queues command,
then no messages were lost. If the first message RS3 receives after rebuild
queues has not been seen before, then either messages were lost, or no
messages were in the stable queue.

Even if there are no messages in the stable queue from a specific source, RS3
identifies them as lost because it has no duplicate messagesto use for a
comparison. You can prevent this false loss detection by creating a heartbeat
with an interval that is less than the save interval. This guarantees that there
will always be at least one message in the stable queue.

For instructions on using heartbeatsin Sybase Central, see* Conceptsfor using
heartbeats to monitor latency” in Replication Server’s plug-in help.

When RS3 performs SQM loss detection for therebuilt RS2, it logsintoitslog
file messages similar to the following “ Checking Loss’ message examples.
These messages mark the beginning of the loss detection process. Subsequent
messages are |logged with the results. Each message contains a source and
destination pair.

Thefirst example message indicates that RS3 is checking loss for the RSSD at
RS3 from the RSSD at RS2:

Checking Loss for DS3.RS3 RSSD from DS2.RS2 RSSD
date=Nov-01-95 10:15 am
gid=0x01234567890123456789

Replication Server

CHAPTER 19 Replication System Recovery

The second example message indicates that RS3 is checking loss for the
replicate database RDB at RS3, from the primary database PDB at RSL:

Checking Loss for DS3.RDB from DS1.PDB
date=Nov-01-95 11:00am
gid=0x01234567890123456789

The third example message indicates that RS3 is checking loss for the RSSD
at RS3 from the RSSD at RS1:

Checking Loss for DS3.RS3_RSSD from DS1.RS1 RSSD
date=Nov-01-95 10:00am
gid=0x01234567890123456789

RS3 reports whether it detects aloss. For example, the results of such loss-
detection tests might read as follows:

No Loss for DS3.RS3 RSSD from DS2.RS2 RSSD
Loss Detected for DS3.RDB from DS1.PDB
No Loss for DS3.RS3 RSSD from DS1.RS1 RSSD

DSl loss between a Replication Server and its databases

Some messagesin Replication Server queues are destined for databases, rather
than for other Replication Servers. The DSI performs loss detection in away
that is similar to stable queue loss detection.

If you rebuild queues at a Replication Server that has no originating routes, no
SQM loss detectionis performed, but the Replication Server performs DSl loss
detection for its messages.

DSI example The DS at Replication Server RS2 generates the following message for the
RSSD at RS2:

DSI: detecting loss for database DS2.RS2 RSSD from
origin DS1.RS1 RSSD

date=Nov-01-95 10:58pm

gid=0x01234567890123456789

When retained messages begin arriving from previous sites, the DSI detects a
loss, depending on whether the first message from the origin has aready been
seen by the DSI. If it detects no loss, amessage similar to the following oneis
generated:

DSI: no loss for database DS2.RS2_RSSD from origin
DS1.RS1_RSSD

If the DSI does detect aloss, a message like the following oneis generated:

DSI: loss detected for database DS2.RS2 RSSD from origin

Administration Guide 669

Recovery support tasks

Handling losses

Recovering a loss

Ignoring a loss

670

DS1.RS1_RSSD

When Replication Server detects aloss, no further messages are accepted on
the connection to the SQM or the DSI.

For example, when RS3 detects an SQM message loss for the RDB database
from the PDB database, it rejects all subsequent messages from the PDB
database to the RDB database.

To recover the loss, you need to choose one of the following options:

Ignorethelossand continue, even though some messagesmay belost. You
can use the rs_subcmp program with the -r flag to reconcile primary and
replicate data.

Torunrs_subcmp, see” Subscription comparison procedure” on page 652.
See also Chapter 11, “Managing Subscriptions” and refer to “rs_subcmp”
in Chapter 7, “Programs,” in the Replication Server Reference Manual.

Ignore the loss, then drop and re-create the subscriptions.

Recover by replaying transactions from off-linelogs (primary Replication
Server loss only). In this case, you are not ignoring the loss.

You must execute an ignore loss command in the following situations:

If you choose to recover the lost messages by re-creating subscriptions or
replaying logs.

For an SQM loss, at the Replication Server that reported that |oss, to force
the Replication Server to begin accepting messages again. For example, to
ignore aloss RS3 detected from DS1.PDB, enter the following command
at RS3:

ignore loss from DS1.PDB to DS3.RDB

For aDSl loss, at the database on the Replication Server where the loss
was detected. For example, to ignore aloss reported in DS2.RS2_RSSD
from origin DS1.RS1_RSSD, enter the following command at RS2:

ignore loss from DS1.RS1 _RSSD to DS2.RS2_ RSSD

For both an SQM and a DSl loss that is detected by a Replication Server
at the destination of the route when you rebuild two Replication Serversin
succession.

Replication Server

CHAPTER 19 Replication System Recovery

In this case, you need to execute ignore loss twice, once for SQM losses
and once for DS losses. The ignore loss command that you execute to
ignore DSI loss at the destination Replication Server isthe same command
you use to ignore SQM loss from the previous site.

Setting log recovery for databases

Administration Guide

Setting log recovery manually is part of the procedure for recovering from
truncated primary database logs off-line or restoring primary and replicate
databases from dumps. While the procedure to rebuild queues off-line
automatically setslog recovery for all databases, setting log recovery manually
allows you to recover each database without reconstructing the stable queue.

The set log recovery command places Replication Server inlog recovery mode
for a database. You execute this command after placing Replication Server in
standalone mode. To connect the RepAgents only to those databases that have
been set for log recovery mode, execute the allow connections command. This
puts the Replication Server in recovery mode.

Figure 19-4 illustrates the progression from normal mode to standalone mode
to recovery mode using the set log recovery and allow connections commands.

For databases specified with the set log recovery command, Replication Server
only accepts connections from other Replication Servers and from RepA gents
that are in recovery mode. You then recover the transaction dumpsinto a
temporary recovery database.

671

Recovery support tasks

Figure 19-4: Entering recovery mode with the allow connections
command

Restart -M

Standalone
Mode

set log recovery for DS1.DB
allow connections

Restart

Recovery Mode
Log recovery set
for DS1.DB1

DS1.DB1 Repagent
connect attempt in
normal mode

DS1.DB1 RepAgent connect Reject

attempt in recovery mode Accept

Accept DS2.DB1
connect attem pt

Loss detection after setting log recovery

While you are applying the temporary recovery database to the primary
database, Replication Server may detect SQM |oss between aprimary database
and the Replication Server that manages that primary database.

If all dataisavailable, no intervention is necessary and the replication system

can return to normal operations. The Replication Server logs a message such
as.

No Loss Detected for DS1.PDB from DS1.PDB

If there were not enough messages, Replication Server logs aloss detection
message similar such as:

672 Replication Server

CHAPTER 19 Replication System Recovery

Loss Detected for DS1.PDB from DS1.PDB

You must decide whether to ignore the losses by executing the ignore loss
command, or repeat the recovery procedure from the beginning. To ignore the
loss, enter the following command at the primary Replication Server:

ignore loss for DS1.PDB from DS1.PDB

If you received |oss detection messages, you failed to reload the database to a
state old enough to retrieve all of the messages. See “Determining which
dumpsto load” on page 673.

Determining which dumps to load

Administration Guide

When loading transaction log dumps, always examine the “ Checking Loss”
message that is displayed during loss detection. If there is more than one
message, choose the earliest date and time to determine which dumps to load.

For example, if the following message is generated by a Replication Server,
you would load the dumps taken just before November 1, 1995 at 10:58 p.m.:

Checking Loss for DS3.RDB from DS1.PDB
date=Nov-01-1995 10:58pm
gid=0x01234567890123456789

The date in the message is the date and time of the oldest open transaction in
the log when the last message received by the Replication Server was
generated by the origin queue. L ocate the most recent transaction dump with a
timestamp before the date and time in the message. Then find the full database
dump taken before that transaction dump.

The origin queue ID, or qgid, is formed by the RepAgent and identifies alog
record in the transaction log. The date is embedded in the gid as a timestamp.
Replication Server converts the timestamp to a date for RepAgents for
Adaptive Server.

Replication agents for non-Sybase data servers may also embed the timestamp
in the gid. Replication Server converts the timestamp for non-Sybase data
serversin bytes 20-27. The use of these bytes depends on the replication agent.

Note If the data server isnot an Adaptive Server, the date in the message may
appear nonsensical. You may need to decode the gid in bytes 2027 to identify
the dumps to load.

673

Recovery support tasks

Adjusting database generation numbers

Each primary database in areplication system includes a database generation
number. This number is stored both in the database and in the RSSD of the
Replication Server that manages the database.

Any time you load a database for recovery, you may be required to change the
database generation number, as instructed in the recovery procedure you are
using. This section explains this step.

Determining database generation numbers

674

RepAgent for aprimary database places the database generation number in the
high-order 2 bytes of the gid that it constructs for each log record it passes to
the Replication Server.

The remainder of the qid is constructed from other information that gives the
location of the record in the log and al so ensures that the qgid increases for each
record passed to Replication Server.

The requirement for increasing gid values alows Replication Server to detect
duplicate records. For example, when a RepAgent restarts, it may resend some
log recordsthat Replication Server has already processed. If Replication Server
receives arecord with alower gid than the last record it processed, it treats the
record as a duplicate and ignoresiit.

If you are restoring a primary database to an earlier state, increment the
database generation number so that the Replication Server does not ignorelog
records submitted after the database is reloaded. This step applies only if you
are using the procedures described in “Loading a primary database from
dumps’ on page 647 or in “Loading from coordinated dumps’ on page 646.

If you are replaying log records, increment the database generation number
only if RepAgent previously sent the reloaded 1og records with the higher
generation number. Thissituation arisesonly if you haveto restore the database
and log to aprevious state for the first failure and then later replay the log due
to asecond failure.

Warning! Only change the database generation number as part of arecovery
procedure. Changing the number at any other time can result in duplicate or
missing data at replicate databases.

Replication Server

CHAPTER 19 Replication System Recovery

Dumps and database generation numbers

Administration Guide

When you reload a database dump, the database generation number isincluded
in the restored database. Since the database generation number isalso stored in
the RSSD of the Replication Server that manages the database, you may need
to update that number so that it matches the one in the restored database.

However, when you reload a transaction log, the database generation number
is not included in the restored log. For example, assume the following
operations have occurred in a database:

Table 19-6: Dumps and database generation numbers

Operation Database generation number
database dump D1 100
transaction dump T1 100
dbcc settrunc(ltm’, ‘gen_id', 101) 101
transaction dump T2 101
database dump D2 101

If you reload database dump D1, database generation number 100 is restored
with it. If you reload transaction dump T1, the generation number remains at
100. After transaction dump T2, the generation number remains at 100,
because rel oading transaction dumps does not ater the database generation
number. In this case, you need to change the database generation number to 101
using the dbcc settrunc command before having RepAgent scan transaction
dump T2.

However, if you load database dump D2 before resuming replication, you do
not have to alter the database generation number, since the number 101 is
restored.

675

Recovery support tasks

676 Replication Server

APPENDIX A

Overview

Administration Guide

Asynchronous Procedures

This appendix describes asynchronous stored procedures.

Name Page
Overview 677
Applied stored procedures 679
Request stored procedures 680
Asynchronous stored procedure prerequisites 681
Steps for implementing an applied stored procedure 682
Steps for implementing arequest stored procedure 686
Specifying stored procedures and tables for replication 688
Managing user-defined functions 689

Thisappendix describes the method for replicating stored proceduresthat
are associated with table replication definitions. This method is supported

for applications that require it.

See Chapter 10, “Managing Replicated Functions’ for information about
replicated stored procedures that are associated with function replication
definitions. The method described in that chapter is the recommended

method for replicating stored procedures.

Refer to Replication Server Design Guide for more information on
replication system design issues relating to replicated stored procedures.

Asynchronous procedure delivery allows you to execute SQL stored
procedures that are designated for replication at primary or replicate

databases. Because these stored procedures are marked for replication
using the sp_setreplicate or sp_setrepproc System procedures, they are

called replicated stored procedures.

677

Overview

To satisfy the requirements of distributed applications, Replication Server
provides two types of asynchronous stored procedure delivery: applied stored
procedures and request stored procedures. Each type is described in this
appendix.

Logging replicated stored procedures

Adaptive Server uses the following method to determine in which database a
replicated stored procedure execution will be logged:

The procedure gets logged in the database in which the enclosing transaction
was started.

e If the user does not begin atransaction explicitly, Adaptive Server will
begin one in the user’s current database before the stored procedure
execution.

e If the user begins the transaction in one database, and then executes a
replicated stored procedure in another database, the execution will still be
logged in the database where the user began the transaction.

If the execution of atable-style replicated stored procedure (marked for
replication by using either sp_setreplicateproc_name, ‘true' or
sp_setrepprocproc_name, 'table’) islogged in one database and changes
replicated tables in another database, the table’s changes and the procedure
execution arelogged in different databases. Therefore, the effects of the stored
procedure execution can be replicated twice. The first time the stored
procedure execution itself is replicated. The second time table changes that
have been logged in the other database are replicated.

Logging replicated stored restrictions

Note that replicated Adaptive Server stored procedures may not contain
parameters with the text and image datatypes. Refer to the Adaptive Server
Reference Manual for more information.

678 Replication Server

APPENDIX A Asynchronous Procedures

Mixed-mode transactions

If asingle transaction that invokes one or more request stored proceduresisa
mixed-mode transaction that also executes applied stored procedures or
contains data modification language, Replication Server processes the request
stored procedures after all the other operations. All request operations are
processed together in a single separate transaction. This situation may arise
where a single Replication Server manages both primary and replicate data.

Applied stored procedures

Administration Guide

Replicated stored procedures that Replication Server delivers from a primary
database to areplicate database are called applied stored procedures.

You use applied stored procedure delivery to replicate transactions first
performed on primary datato replicate databases. Data changes are applied at
aprimary database and then distributed at alater time to replicate databases
that subscribe to replication definitions for the data. Replication Server
executes the replicated stored procedure in the replicate database as the
maintenance user, which is consistent with normal data replication.

You can use applied stored procedures to realize important performance
benefits. For example, if your organization has alarge amount of row changes,
you can create an applied stored procedure which changes many rows, rather
than replicating the rows individually. You can also use applied stored
procedures to replicate data set changes which are difficult to express using
normal subscriptions. Refer to the Replication Server Design Guide for more
information.

You set up applied stored procedures by making thefirst statement in the stored
procedure update atable. You must also make sure that the destination
databases have subscriptionsto the before and after images of that updated row.
The applied stored procedure must update only one row in areplicated table.
Replication Server uses the first row updated by the stored procedure to
determine where to send the user-defined function for the procedure.

If the rulesin setting up the applied stored procedure are not met, Replication
Server failsto distribute the stored procedure to replicate databases. See
“Warning conditions” on page 684 for alist of actionsthat Replication Server
takesif it fails to deliver the applied stored procedure.

679

Request stored procedures

Request stored procedures

680

Replicated stored procedures that Replication Server delivers from areplicate
database to a primary database are called request stored procedures. You use a
request stored procedureto deliver atransaction from areplicate database back
to the primary database.

For example, aclient application at aremote location may need to make
changes to primary data. In this case, the application at the remote location
executes a request stored procedure locally to change the primary data.
Replication Server delivers this request stored procedure to the primary
database by executing, in thereplicate database, astored procedure that hasthe
same name as the stored procedure in the primary database. The stored
procedurein the primary database updates the primary datathat the transaction
changes.

Replication Server executes the replicated stored procedure in the primary
database as the user who executed the stored procedure in the replicate
database. This ensures that only authorized users may change primary data.

In an application, Replication Server may replicate some or al of the data that
is changed in the primary database. The changes are propagated to replicate
databases managed by Replication Servers with subscriptions for the related
data, either as data rows (insert, delete, or update operation) or as stored
procedures. Using this mechanism, the effect of atransaction quickly arrivesat
both the primary and replicate databases.

Warning! Do not execute a request stored procedure in a primary database.
Thiscan lead to looping behavior, in which replicate Replication Servers cause
the same procedure to execute in the primary database.

Using request stored procedures ensures that all updates are made at the
primary database, preserving Replication Server’s basic primary copy data
model while keeping the replication system invulnerable to network failures
and excess traffic. Even when there is primary database failure, or network
failure from the replicate database to the primary database, Replication Server
remains fault tolerant. It queues any undelivered request stored procedure
invocations until the failed components come back online. When the
components are again in service, Replication Server completes delivery.

Replication Server

APPENDIX A Asynchronous Procedures

By using Replication Server’s guaranteed request stored procedure delivery
feature, you can obtain all the benefits of having asingle, definitive copy of
your data that includes all the latest changes. At the same time, Replication
Server provides the availability and performance benefits of de-coupling
applications at replicate databases from the primary database.

Refer to the Replication Server Design Guide for more information on
replication system design issues relating to asynchronous procedure delivery.

Asynchronous stored procedure prerequisites

Administration Guide

Before implementing applied or request stored procedures on your system, be
sure you:

e Understand how you will use asynchronous procedure delivery to meet
your application needs. Refer to the Replication Server Design Guide for
more information.

* SetupaRepAgent or LTM for the stored procedure, even if the database
contains no primary data (such as when using request functions). Refer to
the Replication Server installation and configuration guides for your
platform for details.

* Createafunction string for user-defined functions for function-string
classes for which Replication Server does not generate default function
strings. You can use the alter function string command to replace a default
function string with onethat performs the action your application reguires.

See “Function strings and function-string classes’” on page 457 for more
information.

* Follow the step-by step instructions provided in this chapter for setting up
applied or request stored procedures.

Note For function-string classes for which default generated function strings
are provided, Replication Server creates a default function string that executes
a stored procedure with the same name as the user-defined function. The
proceduresin this chapter assume that Replication Server processes applied or
request stored procedures for such classes. For all other classes, you must
create function strings for the user-defined function string.

681

Steps for implementing an applied stored procedure

Steps for implementing an applied stored procedure
To implement an applied stored procedure, perform the following steps:

1 Review the requirements described in “ Asynchronous stored procedure
prerequisites’ on page 681.

2 Set up replicate databases that contain replicate tables. These tables may
or may not match the replication definition for the primary table.

3 Asnecessary, set up routes from the primary Replication Server to the
replicate Replication Servers that have subscriptionsto replication
definitions for the primary table.

See Chapter 6, “Managing Routes” for details on setting up routes.

4 Locateor create areplication definition on the primary Replication Server
that identifies the table to be modified.

See Chapter 9, “Managing Replicated Tables’ for information on creating
replication definitions.

5 Inthe primary database, use the sp_setreplicate System procedure or the
sp_setreptable system procedure to mark the table for replication. For
example, for atable named employee:

sp_setreplicate employee, 'true'
or

sp_setreptable employee, 'true'
For sp_setreptable, the single quotes are optional.

See* Specifying stored procedures and tablesfor replication” on page 688
for detailson using sp_setreplicate. See“Using the sp_setreptable system
procedure” on page 276 for details on using sp_setreptable.

6 Createthe stored procedure on the primary database. Thefirst statement in
the stored procedure must contain an update command for thefirst row of
the primary table. For example:

create proc upd emp

@emp_id int, @salary float

as

update employee

set salary = salary * @salary
where emp id = @emp id

682 Replication Server

APPENDIX A Asynchronous Procedures

Administration Guide

Warning! If the first statement in the stored procedure contains an
operation other than update, Replication Server cannot distribute the
stored procedureto replicate databases. See* Warning conditions’ on page
684 for more information.

Never include dump transaction or dump database commandsin the stored
procedure. If the stored procedure contains commands with statement
level errors, the error may occur at the replicate DSI. Depending on the
error actions, the DSI may shut down.

In the primary database, use the sp_setreplicate System procedure or the
sp_setrepproc System procedure to mark the stored procedure for
replication. For example:

sp_setreplicate upd emp, 'true'
or
sp_setrepproc upd emp, 'table'

See" Specifying stored procedures and tablesfor replication” on page 688
for details on using sp_setreplicate. See “Marking stored procedures for
replication” on page 343 for details on using sp_setrepproc.

At the replicate Replication Servers, create subscriptions to areplication
definition for the table that the stored procedure at the primary database
updates.

See Chapter 11, “Managing Subscriptions” for details on creating
subscriptions.

Warning! Be sure the replicate database subscribes to both the before
image and after image of the updated row. If it does not, Replication Server
cannot distribute the stored procedure to the replicate database. See
“Warning conditions’ on page 684 for more information.

Create a stored procedure on the replicate database with the same name
and parameters asthe stored procedure on the primary database, but do not
mark the procedure as replicated. For example:

create proc upd emp

@emp id int, esalary float

as

update employee

set salary = salary * @salary
where emp_id = @emp_id

683

Steps for implementing an applied stored procedure

10 Grant execute permission on the stored procedure to the mai ntenance user.
For example:

grant execute on upd emp to maint user

11 Create a user-defined function on the primary Replication Server that
associates the stored procedure to the name of areplication definition for
thetable it updates. For example:

create function employee rep.upd emp
(eemp_id int, @salary float)

Only one user-defined function are shared by all replication definitionsfor
the same table. You can specify the name of any of these replication
definitions.

12 Verify that al Replication Server and database objects in steps 1 through
11 exist at the appropriate locations.

Refer to Chapter 6, “ Adaptive Server Stored Procedures,” in the
Replication Server Reference Manual for information about stored
procedures used to query the RSSD for system information.

Warning conditions

Conditions and
actions

684

If the first statement in the applied stored procedure is an operation other than
update, or the replicate database does not subscribe to the before image and
after image of the updated row, Replication Server failsto deliver the applied
stored procedure to the replicate database. Instead, Replication Server
performs other actions that you can interpret as warnings.

The actions Replication Server takesis based on:

e Thefirst operation (other than update) contained in the applied stored
procedure at the primary database

¢ Whether the row modification stays in the subscription for the replicate
database, and whether it matches the subscription’s before image or after
image

This section identifies the warning conditions that prevent Replication Server
from delivering an applied stored procedure at a replicate database.

Condition: Thefirst row operation is an insert operation.

Action: Replication Server distributes the insert operation instead of the
applied stored procedure.

Replication Server

APPENDIX A Asynchronous Procedures

Administration Guide

Condition: Thefirst row operation is a delete operation.

Action: Replication Server distributes the del ete operation instead of the
applied stored procedure.

Condition: Replicate Replication Servers have subscriptions that match the
before image, but not the after image, of the modified row.

Action: Replication Server distributes a delete operation (rs_delete System
function) to replicate databases with subscriptions to the before image but not
the after image of the row modification.

Example: Assumethereisatable T1 that has a column named C1 with avalue
of 1. A replicate database has a subscription to areplication definition for table
T1whereC1 =1

If the associated stored procedure is executed with the parameters= 1 (before
image) and = 2 (after image), the replicate database does not subscribe to the
after image value of 2. Therefore, Replication Server distributes the delete
operation to the replicate database.

Condition: Replicate Replication Servers have subscriptions that match the
after image, but not the before image of the modified row.

Action: Replication Server distributes an insert operation (rs_insert System
function) to replicate databases with subscriptionsto the after image but not the
before image of the row modification.

Example: Assumethereisatable T1 that has a column named C1 with avalue
of 1. A replicate database has a subscription to areplication definition for table
T1whereC1 =2.

If the associated stored procedure is executed with the parameters = 1 (before
image) and = 2 (after image), the replicate database does not subscribe to the
before image value of 1. Therefore, Replication Server distributes the insert
operation to the replicate database.

Condition: Replicate Replication Servers have subscriptionsthat match neither
the before image nor the after image of the row modification.

Action: Replication Server does not distribute any operation or stored
procedure to the replicate databases.

Example: Assumethereisatable T1 that has a column named C1 with avalue
of 1. A replicate database has a subscription to areplication definition for table
T1 whereC1 > 2.

685

Steps for implementing a request stored procedure

If the associated stored procedure is executed with the parameters equal to 1
(before image) and equal to 2 (after image), the replicate Replication Server
doesnot subscribeto either the beforeimage value of 1 or the after imagevaue
of 2. Therefore, Replication Server performs no distribution to the replicate
database.

Steps for implementing a request stored procedure

686

To implement arequest stored procedure, perform the following steps:

1 Review the requirements described in “ Asynchronous stored procedure
prerequisites’ on page 681.

2 Asnecessary, set up aroute from the replicate Replication Server to the
primary Replication Server where the data is updated, and from the
primary Replication Server to the replicate Replication Server that sends
the update.

See Chapter 6, “Managing Routes’ for details on setting up routes.

3 Create alogin name and password at the primary Replication Server for
the user at the replicate Replication Server.

See Chapter 8, “Managing Replication Server Security” for details.

4 At thereplicate Replication Server, create the necessary permissions for
this user to execute the stored procedure at the primary Replication Server.

See Chapter 8, “Managing Replication Server Security” for details.

5 Attheprimary Replication Server, locate or create areplication definition
that identifies the table to be modified.

See Chapter 9, “Managing Replicated Tables’ for information on creating
replication definitions.

Thereplicate Replication Server may have subscriptionson thereplication
definition.

6 Createthe stored procedure, which does not perform any updates, on the
replicate database. For example:

create proc upd emp

@emp_id int, @salary float
as

print "Transaction accepted."

Replication Server

APPENDIX A Asynchronous Procedures

Administration Guide

10

11

If you want the stored procedure to have the same name as those in
different replicate databases, see “ Specifying a nonunique name for a
user-defined function” on page 693 for details.

In the replicate database, use the sp_setreplicate system procedure or the
sp_setrepproc System procedure to mark the stored procedure for
replication. For example:

sp_setreplicate upd emp, 'true'
or
sp_setrepproc upd emp, 'table'

See" Specifying stored procedures and tablesfor replication” on page 688
for details on using sp_setreplicate. See “Marking stored procedures for
replication” on page 343 for details on using sp_setrepproc.

Create a stored procedure on the primary database with the same name as
the stored procedure on the replicate database, but do not mark the
procedure as replicated. This stored procedure modifies a primary table.
For example:

create proc upd emp

@emp_ id int, @salary float

as

update employee

set salary = salary * @salary
where emp id = @emp id

Note The stored procedure names on the primary and replicate databases
can differ if you alter the function string for the function to execute a
stored procedure with adifferent name. See“ Mapping to adifferent stored
procedure name” on page 691 for more information.

Grant permission on the stored procedure to the replicate Replication
Server users who will execute this stored procedure. For example:

grant all on upd emp to public

Create a user-defined function on the primary Replication Server that
associates the stored procedure to the name of areplication definition for
the table it updates. For example:

create function employee rep.upd emp
(eemp_id int, @salary float)

Verify that all Replication Server and database objects in steps 1 through
10 exist at the appropriate locations.

687

Specifying stored procedures and tables for replication

Refer to Chapter 6, “ Adaptive Server Stored Procedures,” in the
Replication Server Reference Manual for information about stored
procedures used to query the RSSD for system information.

Specifying stored procedures and tables for replication

688

You can use the sp_setreplicate system procedure in Adaptive Server to mark
database tables and stored procedures for replication.

You can also use the sp_setreptable system procedure to mark tables for
replication and the sp_setrepproc system procedure to mark stored procedures
for replication. These system procedures extend the capabilities of
sp_setreplicate and are intended to replace it.

See “Using the sp_setreptable system procedure” on page 276 and “Marking
stored procedures for replication” on page 343 for details.

The syntax for the sp_setreplicate system procedureis:
sp_setreplicate [object_name [, {' true' | false']]
object_name can be either a table name or a stored procedure name.

The“true” and “false” parameters change the replication status of a specified
object. (The single quotes are optional .)

e Usesp_setreplicate with no parametersto list al replicated objectsin the
database.

e Usesp_setreplicate with just the object name to check the replication
status of the object. Adaptive Server reports 'true’ if replication is enabled
for the object, or 'false' if it isnot.

¢ Usesp_setreplicate with the object name and either 'true’ or 'false’ to enable
or disable replication for the object. You must be the Adaptive Server
System Administrator or the Database Owner to use sp_setreplicate t0
change the replication status of an object.

Warning! A replicated stored procedure should only modify datain the
database in which it is executed. If it modifies data in another database,
Replication Server replicates the updated data and the stored procedure.

Replication Server

APPENDIX A Asynchronous Procedures

Managing user-defined functions

This section describes commands for managing user-defined functions. See
Chapter 8, “Managing Replication Server Security” for alist of permissions
that are required to use the commands. See Chapter 14, “ Customizing
Database Operations” for details on altering function strings for user-defined
functions and displaying function-related information.

Creating a user-defined function

Administration Guide

Use the create function command to register areplicated stored procedure with
Replication Server. When a stored procedure is executed, Replication Server

maps it to areplication definition. The replication definition contains a user-

defined function name that matches the name of the stored procedure.

Replication Server delivers the function to the Replication Server that is
primary for the replication definition. When the destination Replication Server
that owns the replication definition receives the function, it maps the stored
procedure parameters into the commands for the user-defined function.

The syntax for the create function command is:

create function replication_definition.function
([@parameter datatype [, @parameter datatype]...])

The replication_definition must be an existing replication definition.
Observe these guidelines when using this command:

» Execute this command at the Replication Server where the replication
definition was created.

* Do not use the names of system functions. See Chapter 14, “Customizing
Database Operations’ for the list of reserved system-function names.

* Includethe parentheses surrounding the listed parameters, even when you
are defining functions with no parameters.

» If you are not using a function-string class for which default generated
function strings are provided, after you have created a user-defined
function, use the create function string command to add a function string.
See Chapter 14, “Customizing Database Operations’ for details.

The following example creates a user-defined function named Stock_receipt.
The function is associated with the items_rd replication definition:

create function Items rd.Stock receipt

689

Managing user-defined functions

(eLocation int, @Recpt num int,
@Item no char(15), @Qty recd int)

When a user executes the replicated stored procedure, Replication Server now
deliversit.

Adding parameters to a user-defined function

690

When you add a parameter to a replicated stored procedure, use the alter
function command to tell Replication Server about the new parameters. To add
the parameters:

1 Alter the stored procedure at the primary or replicate data server and
provide defaults for new parameters.

2 Asaprecaution, quiesce the system. Altering functions while updates are
in process can have unpredictable results.

See “ Quiescing Replication Server” on page 111 for details on quiescing
the system.

Alter the function using the alter function command.

4 If you are not using afunction-string class for which default generated
function strings are provided, alter function strings to use the new
parameters. See Chapter 14, “ Customizing Database Operations” for
details.

The syntax for the alter function command is:

alter function replication_definition.function
add parameters @parameter datatype
[, @parameter datatype]...

Thereplication_definition is the name of the replication definition for the
function. A function can have up to 255 parameters.

The following example adds an int parameter named Volume to the New_issue
function for the Tokyo_quotes replication definition:

alter function Tokyo quotes.New_ issue
add parameters @Volume int

Replication Server

APPENDIX A Asynchronous Procedures

Dropping a user-defined function

Usethedrop function command to drop a user-defined function. Thiscommand
drops a function name and any function strings that have been created for it.
You cannot drop system functions.

Before you drop the user-defined function, be sure to:

1 Dropthestored procedureat the primary database using the drop procedure
Adaptive Server command, or use the sp_setreplicate Or sp_setrepproc
system procedure and specify 'false' to disable replication for the stored
procedure.

See* Specifying stored proceduresand tablesfor replication” on page 688
for details on using sp_setreplicate. See “Marking stored procedures for
replication” on page 343 for details on using sp_setrepproc.

2 Asaprecaution, quiesce the system before executing the drop function
command. Dropping functions while updates are in process can have
unpredictabl e results.

See“Quiescing areplication system” on page 111 for detailson quiescing
the system.

The syntax for the drop function command is:
drop function replication_definition.function

Execute the command on the Replication Server where the replication
definition was created.

Thefollowing command drops the Stock_receipt user-defined function created
in the previous section:

drop function Items_ rd.Stock receipt

Mapping to a different stored procedure name

Administration Guide

When you create a user-defined function in a database that uses the a function-
string class for which default generated function strings are provided,
Replication Server generates adefault function string. The default generated
function string executes astored procedure with the same name and parameters
as the user-defined function.

691

Managing user-defined functions

Example

692

For example, if you are using adefault function string, you can set up arequest
stored procedure to execute in the replicate database by creating a stored
procedure in the primary database with the same name and parameters as the
user-defined function.

If you want to map the user-defined function to a different stored procedure
name, use the alter function string command to configure Replication Server to
deliver the stored procedure by executing a stored procedure with a different
name. You can also do so in function-string classesthat allow you to customize
function strings.

This example illustrates how to map a user-defined function to a different
stored procedure name.

1 Assume the stored procedure upd_sales exists on the primary Adaptive
Server, and that it performs an update on the Adaptive Server sales table;

create proc upd sales
@stor id varchar(10),
@ord _num varchar (10),
@date datetime
as
update sales set date = @date
where stor id = @stor id
and ord num = @ord num

2 Toregister the upd_sales stored procedure with the Replication Server,
create the following function, whose name includes in its name the
sales_def replication definition on the sales table and the upd_sales
replicated stored procedure:

create function sales def.upd sales
(estor_id varchar(10), @date datetime)

3 Onthereplicate Adaptive Server, aversion of the stored procedure
upd_sales that performs no work is created with the same name:

create proc upd_ sales

@stor_id varchar (10),

@ord _num varchar (10),

@date datetime

as

print "Attempting to Update Sales Table"
print "Processing Update Asynchronously"

4 To execute the upd_sales stored procedure with the name real_update
instead of upd_sales:

¢ Thedefault generated function string is atered:

Replication Server

APPENDIX A Asynchronous Procedures

alter function string sales def.upd sales
for rs sqglserver function class

output rpc

'execute real update

@stor_id = ?stor_ id!param?,

@date = ?date!param?’

e A stored procedurein the primary database is created with the name
real_update. It accepts two parameters.

Specifying a nonunique name for a user-defined function

The name of a user-defined function must be globally uniquein the replication
system so that Replication Server can locate the particular replication
definition for which the user-defined function is defined. If you create more
than one replication definition for the same primary table, thereis only one
user-defined function for all of that table's replication definitions.

If the user-defined function nameisnot unique, thefirst parameter of the stored
procedure must be @rs_repdef, and the name of the replication definition must
be passed in this parameter when the stored procedure is executed.

Do not definethe @rs_repdef parameter in the create function command for the
user-defined function. The replication agent extracts the replication definition
name and sendsit with the LTL commands. This convention works with
RepAgent for Adaptive Server or LTM for SQL Server, but may not be
supported by replication agents for other data servers.

Example This example assumes that the user-defined function is not unique and the
replication definition name is passed to the @rs_repdef parameter when the
following stored procedure is executed:

create proc upd sales

@rs_repdef varchar(30),

@stor_id varchar(10),

@date datetime

as

print "Attempting to Update Sales Table"
print "Processing Update Asynchronously"

Administration Guide 693

Managing user-defined functions

694 Replication Server

APPENDIX B

Administration Guide

LTM for SQL Server

This appendix describes the Log Transfer Manager (LTM), which isthe
replication agent for SQL Server databases.

Note LTM isthe replication agent for SQL Server version 11.0.x and
earlier. LTM is not used with Adaptive Server version 11.5 and later.

Name Page
Overview 696
Dataflow for replication systems with LTMs 696
SQL Server LTM executable program 701
Configuring and maintaining the LTM 702
Suspending and resuming log transfer 708
Modifying replication systems with LTMs 709
LTM error log information 712

Thisappendix describesLTM and itsfunction in the replication system. It
describes how to configure and maintain it and provides procedures for
changing the status of adatabase from primary to replicate and vice versa.
It describes how the LTM logs errors.

For detailed information about these topics and for information about
warm standby applicationsand recovery operationswhen your replication
system includes LTMs, see the Replication Server Administration Guide
for version 11.0.

695

Overview

Overview

Y

LTM isthe replication agent for SQL Server databases. LTM notifies
Replication Server of actions in a database that must be replicated to other
databases. LTM reads the database transaction |og and transferslog records for
replicated tables and stored proceduresto the Replication Server managing the
database. The Replication Server distributes the modifications to sites with
subscriptions for the data.

AnLTM isneeded for every database that contains primary data and for every
database where asynchronous procedures are executed. A database that
contains only copies of replicated data and contains no asynchronous
procedures does not require an LTM.

See“LTM processing data flow” on page 697 for a description of how LTM
reads transaction information in the SQL Server, formatsit, and submitsit to
Replication Server.

Data flow for replication systems with LTMs

696

This section assumes atypical scenario where a Replication Server exists at
both primary and replicate sites, as shown in Figure B-1. Each time aclient
requests a transaction that changes database content, the following actions
occur:

1 ThelLTM readsthelog of the primary database for transactions that are
marked for replication.

2 ThelLTM forwards the transactions, through the Log Transfer Language
(LTL), to the primary Replication Server (PRSin the figure), where they
are stored in a stable queue.

3 Theprimary Replication Server determines, for each transaction, which of

the following actions to take:
e Discard the transaction if no subscriptions exist for the data.

e Forward the transaction to each replicate Replication Server (RRSin
the figure), where it is stored in a stable queue.

Replication Server

APPENDIX B LTM for SQL Server

4 Thereplicate Replication Server determines, for each transaction, which
of the following actions to take:

¢ Route the transaction to another Replication Server.

* Appliesthe transaction to replicate databases that it manages.

Figure B-1: Replication Server overview

Primary Data Server Replicate Data Server

=) S

Log

¢ PRS RRS An(sactions

WF==D—eD
——— P F——

LTM JTransactions
= — —, @
g Ne—
Stable Queues Stable Queues Other RRSs

LTM processing

The LTM for SQL Server isan Open Server application. It connectsto a
primary database as a client, retrieves the data for replicated objects from the
SQL Server log, and convertsthe log record information into LTL commands.
These commands are then sent to the primary Replication Server for
distribution and replication.

LTM processing data flow

The following describes the flow of datain LTM processing. The LTM
performs the following actions, as shown in Figure B-2.

Administration Guide 697

Data flow for replication systems with LTMs

1 Scansthe primary database log and forwards transaction log recordsto the
primary Replication Server (PRS in the figure) involving tables that are
marked for replication.

2 Filters out records written by the database maintenance user.

This step prevents transactions that are replicated to the primary database
from being re-replicated out of the database to other sites.

Note For applications designed using the redistributed corporate rollup
model, LTM must be started with the -A flag, which allows replicated
transactions to be redistributed as primary data. See “ Redistributed
corporate rollup” on page 14 for more information.

3 Marksthe transaction log so the primary data server (PDS in the figure)
does not truncate |og records that have not yet been passed for replication.
For details, see “ Data server log truncation” on page 698

Figure B-2: LTM processing

LTM
PDS ‘Open "Open PRS
Log Request Client @ Client
A\ | @)
> Log Records | |
S~—
Open Server
| |

Data server log truncation

698

TheLTM retrievestransactionsfrom the SQL Server log and sendsthemto the
primary Replication Server. Aslong asthere is space in the database | og, the

data server can continue to process updates. To prevent thelog from filling up,
you need to truncate it using the SQL Server dump transaction command.

SQL Server and the LTM cooperate to ensure that only transactions a ready
processed by the LTM and passed to Replication Server are truncated.

The LTM maintains a secondary truncation point in the SQL Server log. The
secondary truncation point is the log page that contains the begin transaction
command for the oldest transaction not yet fully received by Replication
Server. The LTM resets the truncation point when SQL Server returns an end-
of -scan message. Two conditions cause SQL Server to return an end-of-scan

message:

Replication Server

APPENDIX B LTM for SQL Server

The batch_sz
condition

PDS

When the number of log records returned to the LTM has reached the
number specified with the batch_sz configuration parameter

When the time interval specified by the scan_retry configuration
parameter has expired

See“LTM configuration file” on page 705 for information about setting these
parametersin the LTM configuration file.

The batch_sz configuration parameter is the number of log records to request
from the SQL Server in each batch before moving the LTM truncation point.

The following eventsresult in the LTM setting the truncation point, as shown
in Figure B-3 on page 699:

1

When the primary data server (PDS in the figure) reaches the batch sz
limit, it sends an end-of-scan message to the LTM.

When the LTM receives an end-of-scan message, it requests a new
truncation point from the primary Replication Server (PRS in the figure).

The primary Replication Server returns the latest truncation point to the
LTM and writesit to the rs_locater system table.

The LTM executes the dbcc settrunc command in the primary data server
to set the LTM truncation point.

Figure B-3: Data server log truncation

3. Truncation point sent to rs_locater system table

LTM
" Open

4. New 3. New

truncation

Open '
Cl?ent |

| Client truncation
>| | \—>

2. Request for new
truncation point

1. End-of-scan

‘Open Server

PRS

| |

Dump tran |

y |

Active secondary truncation pt.
L I

Administration Guide

699

Data flow for replication systems with LTMs

The scan_retry
condition

LTM user thread

700

When there are no | og records, the data server |og scan thread sleeps. New log
activity awakens the log scan thread. The scan_retry configuration parameter
limits the length of time to sleep. When the data server reaches the maximum
scan retry time, and there is still no new log activity, it sends an end-of-scan
messageto the LTM. Processing occurs asin steps 2 through 4 in the preceding
section.

When new records are added to the end of the log, the log scan thread wakes
up and sends the new records. If batch_szis not reached yet, it goes back to
sleep. Thetimeremaining in scan_retry is added to the next sleep interval, for
amaximum time of scan_retry* 2 seconds. When the log scan thread sleep
interval hasexpired, the thread returns an end-of -scan messageto the LTM, and
anew log scan request isinitiated.

Note If you restart an LTM while the log scan thread is sleeping, the SQL
Server rejectsthe LTM connection because the sleeping log scan thread has not
released the previous LTM connection. When the thread wakes up, the SQL
Server releases the previous connection and can then accept anew LTM
connection. If you create a script to automatically restart an LTM, you should
have the script sleep for scan_retry * 2 seconds before it restarts the LTM.

Thereisone LTM user thread for each primary database that the Replication
Server manages. The LTM user thread managesan LTM connection. It verifies
that LTM submissions are valid and writes them into the inbound stable queue
for the database.

If the connection between an LTM and aReplication Server isbroken, theLTM
user thread shuts down.

You can monitor generd information on current Replication Server threads by
using the command admin who. On the display output, the LTM user thread
appearsas“LTM USER”.

Replication Server

APPENDIX B LTM for SQL Server

SQL Server LTM executable program

If the Replication Server hasan LTM for a SQL Server database, use the Itm
operating system command to start the LTM. Do this after the RSSD SQL
Server and the Replication Server are already running. Here is the syntax for
Itm:

Itm [-C config_file] [-S Itm_name]
[-l interfaces_file] [-E errorlog_file]

[-M] [-A] [-W] [-V]
Refer to “Itm” in Chapter 7, “Programs,” in the Replication Server Reference
Manual for complete information about each of the parameters of the Itm
command.

Thers_init program createstherunfile*RUN_name”, where nameisthe name
of theLTM. The run file specifiesthe Itm command with parameters set for the
installed LTM. Normally, you start LTM by executing thisfile.

The Itm executable program and the LTM run file are located in the bin
subdirectory of the Sybase release directory. Refer to the Replication Server
installation and configuration guides for your platform for more information.

Warning! If you are running more than one LTM, either execute themin
separate directories, or use the -E flag to specify different error log file names.
Otherwise, the LTMs will try to record their messagesin the samefile.

Shutting down an LTM
To shut down an LTM, log in to it and enter this at the isql prompt:
shutdown

When you shut down an LTM, it refuses additional connections, terminates
threads, and exits.

Checking log files for errors

Like the Replication Server, the LTM displays status and error messagesin its
logfile. Thedefault namefor thelog fileisItm.log. You can change this default
by restarting Itm with the -E option and specifying the error log file nameto use.

Administration Guide 701

Configuring and maintaining the LTM

You can check the Itm.log files for any error messages. One way to do thisis
by using Sybase Central, which also lets you invoke shell scripts based on
errors reported in those logs.

RSM In Sybase Central, see thetopics under “Viewing the Error Log” in Replication
Server’s plug-in help.

M essages continue to accumulate in the error log files until you remove them.
For thisreason, you may choose to truncate thelog fileswhenthe LTM is shut
down.

If alog fileisunavailable, important error informationiswrittento the standard
error output file, which you can display on aterminal or redirect to afile.

Configuring and maintaining the LTM

An LTM for the RSSD isinstalled with the Replication Server if the
Replication Server isthe source site for any route. In addition, a databasein a
replication system requiresan LTM if:

e The database holds primary data, or
e Replicated stored procedures are executed in the database

The following sections describe how to maintain LTMs for the RSSD and the
databases in your system.

The only task you may need to perform for the RSSD LTM is modifying the
configuration file. An LTM configuration file contains information the LTM
needs to find the database log it is transferring and the Replication Server to
which it is transferring the log.

This section describes the components and resources that must be present or
assembled before you can run LTM. See the Replication Server Design Guide
for component requirements for different replication topologies and
performance considerations when constructing topologies.

702 Replication Server

APPENDIX B LTM for SQL Server

Adding a Replication Server

RSM

To add a Replication Server, use the rs_init installation program, as described
in the Replication Server Installation Guide for your platform. When
connecting anew Replication Server to an existing system, always conduct a
careful review and analysis of how the server will fit into your system.
Determine what other processes are required for the server and designate
required names and accounts for these processes.

You can aso add aReplication Server using Replication Server plug-in. Seethe
topics under, “Adding a server to an RSM Server domain” in Replication
Server plug-in help for more information.

When you install each Replication Server, rs_init performs the following tasks:
e Creates configuration files for the Replication Server and the RSSD LTM
e Createsexecutablefilesto start the Replication Server and the RSSD LTM
e Setsupthe RSSD

e Startsthe Replication Server and the RSSD LTM

Preparing databases for replication

SQL Server databases are prepared for use with Replication Server using the
rs_init program described in the Replication Server installation and
configuration guides for your platform.

rs_init installation program

Administration Guide

The rs_init program prepares a database for replication. If the database has
primary data, rs_init:

e Createsan LTM configuration file
e Createsarun file, an executable script to start the LTM
o« Startsthe LTM

e Setsthe secondary truncation point to “valid” in the SQL Server database,
preventing SQL Server from truncating database log records before the
LTM hasretrieved them

Refer to the Replication Server installation and configuration guides for your
platform for details on each step.

703

Configuring and maintaining the LTM

If you are adding a database that requires an LTM, you specify the following
information in rs_init:

Interfaces file

LTM name

Replication Server user and password
LTM Administrator user and password
LTM error log file name

LTM configuration file name

LTM password encryption

LTM character set

LTM language

LTM sort order

LTM interfaces file information

The interfaces file contains network definitions for serversin the replication
system, including Replication Servers, data servers, and LTMs. Server
programsareregisteredin an interfacesfile so that client applications and other
server programs can locate them.

Generally, oneinterfacesfile at each site contains entries for all local and
remote Replication Servers and data servers. The interfacesfile at a site
requires entries for these LTM components:

704

RSSD LTM for this Replication Server
LTMsfor databases managed by this Replication Server

Replication Server

APPENDIX B LTM for SQL Server

You can use the default interfaces file or you can specify an aternative
interfacesfile at the command line when you start Replication Server or LTM.
Theinterfacesfileis usually located in the SYBASE release directory. Use
ds_edit to modify the interfaces file. See the Replication Server installation
guide for your platform for more information.

Note With Replication Server 11.5 and later, if you are using network-based
security, we recommended that you use the directory services of your network
security mechanism to register Replication Servers, SQL Servers, and gateway
software. For details, see the documentation included with your network
security mechanism.

LTM configuration file

Administration Guide

Theconfigurationfilefor an LTM for aprimary database or an RSSD is created
during the installation process. If you are modifying a primary database, you
may need to modify the configuration file for the LTM for the database. Refer
to the Replication Server installation and configuration guides for your
platform.

LTM finds the start-up information it needs in aconfiguration file. The format
of the LTM configuration fileis the same as the Replication Server
configuration file, which is described in “ Setting Replication Server
configuration parameters’ on page 99.

Thefileis created by the rs_init program, but it can be edited with atext editor.
If it contains encrypted passwords, however, you must modify them using
rs_init. Refer to the Replication Server installation and configuration guidesfor
your platform for more information about working with encrypted passwords.
The default name for the LTM configuration fileisthe LTM name with “.cfg”
appended.

Note If apassword isstored in encrypted form, you cannot edit the password
intheLTM configuration file. To change an encrypted password in thisfile, use
thers_init installation program. See the Replication Server installation guide
for your platform for more information.

Refer to the reference page for “Itm” in Chapter 7, “Programs,” in the
Replication Server Reference Manual for detailed descriptions of LTM
configuration file parameters.

705

Configuring and maintaining the LTM

Replication Server login name and password for the LTM

The LTM retrieves information about changes to the replicated system tables
from the database transaction logs and submits them to the Replication Server
for distribution.

Replication Server needs alogin name for LTM use. The rs_init program uses
the create user command to add this Replication Server user.

Observe these guidelines when you change the Replication Server login name
and/or password for the LTM. Seethe Replication Server Reference Manual for
command syntax details.

e To change the login name and/or password (encrypted or clear text), use
the alter user command with the set password clause.

This updates the login and/or password in the rs_users system table.

¢ To change both thelogin name and password (encrypted or clear text), use
the drop user command to drop the old user login name and the create user
command to create the new login and password. Then grant the user
connect source permission.

e Update the LTM configuration file with the new login name and/or
password.

¢ For the updates to take effect, restart the LTM.

LTM login name and password

706

The LTM configuration file contains the login name and password for the
System Administrator LTM user. Use thislogin name and password to log in
to and shut down the LTM. The configuration parameters that hold the login
name and password are LTM_admin_user and either LTM_admin_pw or
LTM_admin_pw_enc.

By default, the System Administrator LTM user’s login nameis“sa’ and the
password is“null.” If the login name or password is changed, edit the LTM
configuration file to match the changes and restart the LTM.

Replication Server

APPENDIX B LTM for SQL Server

SQL Server login name and password

LTMsloginto SQL Server to read the transaction log by using either the “sa”
login name or the “dbo” role, depending on the values you supply when you
use rs_init. If you change the password for the “sa’ login name or the “dbo”
role, you must also changeit inthe LTM configuration file. Be sure to shut
down and restart the LTM so that the new values can take effect.

Enabling and disabling password encryption

When you use the rs_init program to install or upgrade the replication system,
you can enable password encryption. This allows rs_init to encrypt passwords
throughout sensitive areas of the replication system. After the replication
systemisinstalled or upgraded, you can use rs_init at any time to enable
encryption.

If encryption is enabled for a Replication Server, rs_init encrypts new
passwords, passwords contained in the Replication Server configuration file,
and passwords stored in the RSSD. If encryptionisenabled for an LTM, rs_init
encrypts new passwords and passwords contained in the LTM configuration
file.

For details on enabling password encryption using the rs_init program, see the
Replication Server Installation Guide.

Disabling encryption on new and existing LTM passwords

Administration Guide

Once LTM password encryption is enabled through rs_init, use this procedure
to decrypt LTM passwords:

1 Disable encryption on new passwords that are entered for LTM.

To do this, specify 0 as the value of the pwd_encrypt configuration
parameter in the LTM configuration file.

2 Restart the LTM to pick up the new pw_encrypt configuration parameter.

707

Suspending and resuming log transfer

Suspending and resuming log transfer

If you are performing recovery, troubleshooting, or diagnostic tasks, you may
need to suspend and resume log transfer. Thisis described in the following
section. See Chapter 14, “Replication System Recovery,” in the Replication
Server Administration Guide for version 11.0 for procedures to start the LTM
in recovery mode so that it can replay database and transaction dumps.

Suspending LTMs

Examples

708

To disconnect an LTM and prevent an LTM from connecting to the Replication
Server, execute the suspend log transfer command. The LTM remains
suspended until you restart the LTM and execute the resume log transfer
command.

Note Suspending LTMsisthe first step in quiescing the replication system.
See " Quiescing Replication Server” on page 111.

The syntax for the suspend log transfer command is:
suspend log transfer from {data_server.database | all}

data_server —the data server with the database whose LTM isto be suspended.

database —the database whose LTM isto be suspended and whose connections
areto be disallowed.

all —instructs Replication Server to suspend al LTMs and disallow future
connectionsfor al LTMs.

The suspend log transfer command records information in the RSSD, so
suspended LTMs remain suspended after the Replication Server is restarted.

The following examples demonstrate the use of the suspend log transfer
command.

1 Thefollowing command disconnectsthe LTM for the database named
NY_ACCOUNTS_DB:

suspend log tranfer from NY DS.NY ACCOUNTS DB

2 Thefollowing command suspendsall LTM connectionsto this Replication
Server:

suspend log transfer from all

Replication Server

APPENDIX B LTM for SQL Server

In both examples, after the command is executed, the LTM process shutsdown.

Resuming LTMs

This command allows an LTM to connect to a Replication Server. However,
resume log transfer does not restart the LTM. The LTM must also be restarted
manually.

The syntax for the resume log transfer command is:
resume log transfer from {data_server.database | all}
data_server —the data server with the database whose LTM isto be resumed.
database — the database whose LTM isto be resumed.
all —alow all LTMsto connect to this Replication Server.
Examples These examples demonstrate the use of the resume log transfer command.

1 Thefollowing command alowsthe LTM for NY_ACCOUNTS_DB to
connect to the Replication Server:

resume log transfer from NY DS.NY ACCOUNTS_DB

2 Thefollowing command allows all LTMsto connect to the Replication
Server:

resume log transfer from all

In both examples, the appropriate LTMs must then be restarted.

Modifying replication systems with LTMs
The following sections describe how you can:
* Configure Replication Servers to manage primary tables
e Changereplicate to primary databases
e Change primary to replicate databases

when your system uses LTMs as replication agents.

Administration Guide 709

Modifying replication systems with LTMs

Configuring Replication Servers to manage primary tables

If you want to add aroute from a Replication Server that used to be configured
as areplicate-only Replication Server, the RSSD for that Replication Server
requiresan LTM.

Toadd an LTM for the RSSD, perform the following steps:

1

To set the LTM truncation point for the RSSD to “valid,” loginto the SQL
Server as“sa’” and execute the following commands:

use RSSD database

go

dbcc settrunc('ltm,' 'valid')
go

To allow the Replication Server to receive messages from the LTM,
execute the following command at the Replication Server:

alter connection to RSSD data server.RSSD database
set log transfer on

Add an interfaces file entry for the LTM.

Use ds_edit to modify the interfaces file. See the Replication Server
Installation Guide for more information.

Create an LTM configuration file.
Run the LTM for the configuration file.

Changing replicate databases to primary databases

This section describes how to change a database that isdesignated as* replicate
only” to be a source of asynchronous transactions or to contain primary data.

710

1

A the Replication Server managing the database, create RS_user so that
the LTM can log in to the Replication Server.

Use the create user command:

create user RS user name
set password {RS password | null}

where RS _user_name and RS _password are the name and password the
LTM usesto connect to Replication Server.

Grant this user connect source permission, using the grant command:

grant connect source to RS_user_name

Replication Server

APPENDIX B LTM for SQL Server

If the Replication Server already managesaprimary database, you can use
the “RepAgent user” that already exists for the new primary database.

2 AttheSQL Server, create SQL_user so that the LTM can login to the SQL
Server. Grant SQL_user dbo permission or replication_role.

Seethe SYBASE QL Server System Administration Guide for
information about creating users and granting permissionsin SQL Server.

3 AttheReplication Server that manages the database, execute the alter
connection command using the log transfer on option:

alter connection to data server.database
set log transfer on

4 Atthe SQL Server, set the LTM truncation point for the database to

“valid”:
use database
go
dbcc settrunc('ltm', 'valid')
go

5 Addaninterfacesfile entry for the LTM that will read the SQL Server log
of this new primary database.

Use dsedit to modify the interfacesfile. See the installation guide for your
platform for more information.

6 Inthe SQL Server, create the rs_marker stored procedure and set its
replicate statusto “true,” using the sp_setrepproc system procedure. You
can find the rs_marker stored procedure in thefilers_install_primary.sql
or rsinssys.sgl in the scripts directory of the SY BASE release directory.

7 Createan LTM configuration file and start the LTM.

Changing primary databases to replicate databases

Administration Guide

Use the following procedure to change a primary database to areplicate
database:

1 Drop all subscriptions to the replication definitionsin this database.

2 Dropal replication definitions and functions defined for this database.
3 Shut down the LTM.
4

Loginto the Replication Server that manages the database and executethe
alter connection command using the log transfer off option:

711

LTM error log information

alter connection to data server.database
set log transfer off

5 LogintotheSQL Server and setthe LTM truncation point for the database
to “ignore’:

use database

go
dbcc settrunc('ltm', 'ignore')

go

6 Set the status of rs_marker to “false” using the sp_setrepproc system
procedure.

sp_setrepproc rs_marker, 'false'
7 Setthereplicate status of all replicated objectsto “false”. To do this:

a Execute sp_setreptable and sp_setrepproc without any arguments to
generate alist of all replicated tables and stored proceduresin the
database.

b Oneby one, set the replicate status of each table and stored procedure
to “false,” using sp_setreptable and sp_setrepproc.

LTM error log information

712

The SQL Server LTM error logisatext file. The LTM records errors and
informational messages that occur when transferring replicated objects from
the SQL Server log and converting theminto LTL commands. These
commands are sent to the Replication Server for distribution and replication.
Errorsinclude those from the SQL Server, the Replication Server, or internally
fromthe LTM.

By default, the LTM error log file nameis Itm.log and resides in the directory
where you started the LTM. You can specify the name and location of the error
log file by using the -E command line flag when you start the LTM or in an
LTM runfile

For solutions to common LTM errors, refer to the Replication Server
Troubleshooting Guide for Replication Server 11.0.x.

The LTM performs actions based on the severity and recoverability of an error.
The actions are listed in Table B-1.

Replication Server

APPENDIX B LTM for SQL Server

Table B-1: Action for LTM errors

Action

Description

Log the error asa
warning and continue
processing.

Thisactionistakenif the LTM can continue its normal operation, and the error condition
doesnot affect the general integrity of the system. For warning message examples, seethe
Replication Server Troubleshooting Guide for Replication Server 11.0.x.

Retry the operation that
caused the error until it
succeeds.

The LTM retries the operation that caused the error, as in the case where the connection
to the Replication Server isdown, LTM sourceisalready connected, and SQL Server is
out of system alarms, or isin the middle of recovery.

Retrying an operation that caused an error temporarily preventsthe LTM from continuing.
The operation should eventually succeed.

Abort and disconnect
from the SQL Server

and Replication Server.

The action istaken for fatal errorsthat are too severe to continue. The error cannot be
recovered until some corrective action has been taken. The LTM is shut down.

Note Unlike Replication Server, LTM error actions are not user-configurable.

The format of LTM messagesis identical to the format for Replication Server
messages. For details, see “ Error and warning messages’ on page 611.

LTM message types

Table B-2 describes the kinds of errorsyou can expect tofind inthe LTM error
log. For specific errors and how to resolve them, see the Replication Server
Troubleshooting Guide for Replication Server 11.0.x.

Table B-2: Types of LTM error messages

Component Description of error messages

SQL Server Commonly identified by error numbers 9100 through 9199. The LTM can also obtain SQL Server
errors outside this range.

Error numbers 9100 through 9199 are usually related to scanning the log and are not recorded in
the SQL Server log because they are not considered severe to the SQL Server. They are only sent
totheclient. Look at the LTM error log for errors or conditions that occur during thelog scan. The
LTM logs the errors and performs some action based on the error. For alist of warning errorsin
thisrange, see Table B-2 on page 713. It describesthe kinds of errorsyou can expect tofind in the
LTM error log. For specific errors and how to resolve them, see the Replication Server
Troubleshooting Guide for Replication Server 11.0.x.

Administration Guide

713

LTM error log information

Component

Description of error messages

Replication
Server

These include Replication Server normalization errors (numbers 32000 through 32999), rebuild
or restart errors (numbers 14034 through 14036, and 14069), Open Server errors, and ct_lib and
cs _lib errors from librariesthe LTM uses.

If the LTM isin recovery mode and the error number is 14048, the LTM rebuilds the messages
from the SQL Server log.

TheLTM treats normalization errors as recoverable errors. The LTM logs the error and continues
processing. For Open Server and library errors, responsesto errors are based on the severity of the
error and are handled in a manner similar to the way Replication Server handles library errors.
Replication Server shuts down the LTM if the error isfatal.

Normalization errors result from transient inconsistencies in the setup of replicated objects. For
example, if atable has been marked replicated with the sp_setreptable system procedure, but no
replication definitions have yet been created for thetable, the LTM will retrieve log records for an
object that is not yet known to the Replication Server.

LTM

General LTM errorsinclude running out of memory and other software errors.

If the LTM encounters other errors sending the distribute commands (SQL -like statements), it
turns off the batch_Itl_cmds configuration option and sendsthe distribute commands oneat atime.
If the skip_Itl_cmd_err configuration optionis*on,” the LTM skips the command. Otherwise, the
LTM shuts down. See“Itm” in Chapter 7, “Programs,” of the Replication Server Reference
Manual for details on the configuration settings.

LTM warning messages from SQL Server

714

The following SQL Server errors from the 9100 and 9199 error range are
logged as warnings, processing continues. The messages are printed in the
language specified in the LTM_language configuration parameter (assuming
SQL Server has that language installed).

9102 - Failed to convert the log record into row format
for database 'tokyo ds.pubs2', XACT ID 0x10ab RID 0x04.
Information associated with the log record is not
replicated.

9103 - Failed to send the log record for database 'xxx’,
XACT ID 0xl0ab, RID 0x04. Information associated with
the log record is not replicated.

9105 - A missing log record indicates a prematurely
truncated log or a corrupt log. The log record in
database 'tokyo ds.pubs2', XACT ID 0x1l0ab, is not
replicated.

9106 - The deferred insert (INOOP) log record referenced
by the insert indirect (INSIND) log record was not found
as expected at RID 0x04.

9107 - Unexpected function return value while processing
the log record of database 'tokyo ds.pubs2', XACT ID

Replication Server

APPENDIX B LTM for SQL Server

Administration Guide

0x10ab, RID 0x04. The log record may not be
replicated.9110 - Found an ENDXACT log record before
finding an expected INSERT log record in database
'tokyo _ds.pubs2', XACT ID 0x10ab, RID 0x04.

9141 - The stored proc. 'a' associated with the log
record in database 'tokyo ds.pubs2', XACT ID 0x10ab, RID
0x04, was dropped after the log record was written. The
log record is not replicated.

715

LTM error log information

716 Replication Server

APPENDIX C

Introduction

Administration Guide

High Availability on Sun
Cluster 2.2

This appendix provides background and procedures for configuring
Sybase Replication Server for high availability (HA) on Sun Cluster 2.2.

Topic Page
Introduction 717
Terminology 718
Technology overview 719
Configuring Replication Server for high availability 720
Administering Replication Server as a data service 725

This appendix assumes that:

e You arefamiliar with Sybase Replication Server. This chapter does
not explain the steps necessary to install Sybase Replication Server.

¢ You are familiar with Sun Cluster HA. This document does not
explain the steps necessary to install Sun Cluster HA.

* You have atwo-node cluster hardware with Sun Cluster HA 2.2.
Documentation references:

e Sun Cluster 2.2 Software Planning and Installation Guide

e SQun Cluster 2.2 System Administration Guide

e Configuring Sybase Adaptive Server Enterprise 12.0 Server for High
Availability: Sun Cluster HA (see White Papers at
http://www.sybase.com/products/databaseservers/ase).

¢ Replication Server documentation (see Product Manuals at
http://www.sybase.com/products/eaimiddlieware/replicationserver).

717

http://www.sybase.com/products/databaseservers/ase
http://www.sybase.com/products/eaimiddleware/replicationserver

Terminology

Terminology

718

These terms are used in this chapter:

Cluster —multiple systems, or nodes, that work together as a single entity
to provide applications, system resources, and data to users.

Cluster node—aphysical machinethat ispart of a Sun Cluster. Also called
aphysical host.

Data service—an application that provides client service on anetwork and
implements read and write access to disk-based data. Replication Server
and Adaptive Server Enterprise are examples of data services.

Disk group — a well-defined group of multihost disks that move as a unit
between two serversin an HA configuration.

Fault monitor — a daemon that probes data services.

High availability (HA) — very low downtime. Computer systems that
provide HA usually provide 99.999% availability, or roughly five minutes
unscheduled downtime per year.

Logical host —agroup of resources including a disk group, logical host
name, and logical IP address. A logical host resides on (or ismastered by)
aphysical host (or node) in acluster machine. It can move as a unit
between physical hosts on acluster.

Master — the node with exclusive read and write access to the disk group
that has the logical address mapped to its Ethernet address. The current
master of the logical host runsthe logical host's data services.

Multihost disk —adisk configured for potential accessibility frommultiple
nodes.

Failover —the event triggered by anode or adata servicefailure, in which
logical hosts and the data services on the logical hosts move to another
node.

Failback — a planned event, where alogical host and its data services are
moved back to the original hosts.

Replication Server

APPENDIX C High Availability on Sun Cluster 2.2

Technology overview

Administration Guide

Sun Cluster HA is ahardware- and software-based high availability solution.
It provides high availability support on a cluster machine and automatic data
servicefailover injust afew seconds. It accomplishes this by adding hardware
redundancy, software monitoring, and restart capabilities.

Sun Cluster provides cluster management tools for a System Administrator to
configure, maintain, and troubleshoot HA installations.

The Sun Cluster configuration tolerates these single-point failures:
* Server hardware failure

» Disk mediafailure

* Network interface failure

* Server OSfailure

When any of these failures occur, HA software fails over logical hosts onto
another node and restarts data services on the logical host in the new node.

Sybase Replication Server isimplemented as adataservice on alogical host on
the cluster machine. The HA fault monitor for Replication Server periodically
probes Replication Server. If Replication Server is down or hung, the fault
monitor attempts to restart Replication Server locally. If Replication Server
fails again within a configurable period of time, the fault monitor fails over to
thelogical host so the Replication Server will be rebooted on the second node.

To Replication Server clients, it appears as though the original Replication
Server has experienced areboot. Thefact that it has moved to another physical
machine is transparent to the users. Replication Server is affiliated with a
logical host, not the physical machine.

As adata service, the Replication Server includes a set of scripts registered
with Sun Cluster as callback methods. Sun Cluster calls these methods at
different stages of Failover:

* FM_STOP-to shut down the fault monitor for the data service to befailed
over.

e STOP_NET —to shut down the data service itself.
e START_NET —to start the data service on the new node.

 FM_START —to start the fault monitor on the new node for the data
service.

719

Configuring Replication Server for high availability

Each Replication Server isregistered as a data service using the hareg
command. If you have multiple Replication Serversrunning on the cluster, you
must register each of them. Each data service has its own fault monitor asa
separate process.

Note For detailed information about the hareg command, see the appropriate
Sun Cluster documentation.

Configuring Replication Server for high availability

This section describes the tasks required to configure a Replication Server for
HA on Sun Cluster (assuming a two-node cluster machine).

e “Configuring Sun Cluster for HA” on page 720
e ‘“Installing Replication Server for HA” on page 721
« ‘“Installing Replication Server as adata service” on page 722

Configuring Sun Cluster for HA

720

The system should have following components:

e Two homogenous Sun Enterprise servers with similar configurationsin
terms of resources like CPU, memory, and so on. The servers should be
configured with cluster interconnect, which isused for maintaining cluster
availability, synchronization, and integrity.

¢ The system should be equipped with a set of multihost disks. The
multihost disk holdsthe data (partitions) for ahighly available Replication
Server. A node can access dataon amultihost disk only whenitisacurrent
master of the logical host to which the disk belongs.

e The system should have Sun Cluster HA software installed, with
automatic failover capability. The multihost disks should have unique path
names across the system.

e Fordiskfailure protection, disk mirroring (not provided by Sybase) should
be used.

Replication Server

APPENDIX C High Availability on Sun Cluster 2.2

Logical hosts should be configured. Replication Server runs on alogical
host.

Make sure the logical host for the Replication Server has enough disk
space in its multihosted disk groups for the partitions, and that any
potential master for the logical host has enough memory for the
Replication Server.

Installing Replication Server for HA

During Replication Server installation, you need to perform these tasksin
addition to the tasks described in the Replication Server installation guide:

Administration Guide

1

Asa Sybase user, load Replication Server either on ashared disk or on the
local disk. If itison ashared disk, the rel ease cannot be accessed from both
machines concurrently. If it ison alocal disk, make sure the release paths
are the same for both machines. If they are not the same, use a symbolic
link, so they will be the same. For example, if thereleaseison
/nodel/repserver on nodel, and /node2/repserver on node2, link them to
Irepserver on both nodes so the $SYBASE environment variable isthe
same across the system.

Add entries for Replication Server, RSSD server, and primary/replicate
data servers to the interfaces file in the $SYBASE directory on both
machines. Use the logical host name for Replication Server in the
interfacesfile.

Note To use LDAP directory servicesinstead of interfacesfiles, supply
multiple entriesin the DIRECTORY section of the Replication Server
configuration file. If the connection to the first entry fails, the directory
control layer (DCL) attempts to connection to the second entry and so on.
If aconnection cannot be made to any entry in the DIRECTORY section,
Open Client/Server does not use the default interfacesfile to attempt a
connection.

Seethe configuration guidefor your platform for information about setting
up LDAP directory services.

Start the RSSD server.

Follow the installation guide for your platform to install Replication
Server on the node that is currently the master in the logical host. Make
sure that you:

721

Configuring Replication Server for high availability

a Set the environment variables SYBASE, SYBASE_REP, and
SYBASE_OCS:

setenv SYBASE /REPSERVER1210
setenv SYBASE REP REP-12 1
setenv SYBASE OCS 0CS-12 0

/REPSERVERI1210 is the release directory.

b Choosearundirectory for the Replication Server that will containthe
Replication Server run file, configuration file, and log file. The run
directory should exist on both nodes and have exactly the same paths
on both nodes (the path can be linked if necessary).

¢ Choose the multihosted disks for the Replication Server partitions.
d Initiate thers_init command, from the run directory:

cd RUN_DIRECTORY
SSYBASE/S$SSYBASE REP/install/rs_init

5 Make surethat Replication Server is started.

6 Asa Sybase user, copy the run file and the configuration file to the other
node in the same path. Edit the run file on the second node to make sureit
contains the correct path of the configuration and log files, especialy if
links are used.

Note Therun file name must be RUN_repserver_name, where
repserver_nameisthe name of the Replication Server. You can define the
configuration and log file names.

Installing Replication Server as a data service

You also need to perform these specialized tasks to install Replication Server
as adata service:

1 Asroot, create the directory /opt/SUNWCcluster/ha/repserver_name on
both cluster nodes, where repserver_nameisthe name of your Replication
Server. Each Replication Server must haveits own directory with the
server name in the path. Copy the following scripts from the Replication
Server installation directory $SYBASE/$SYBASE_REP/sample/ha to:

/opt/SUNWluster/ha/repserver _name

722 Replication Server

APPENDIX C High Availability on Sun Cluster 2.2

Administration Guide

on both cluster nodes, where repserver_nameis the name of your
Replication Server:

repserver start net
repserver stop net
repserver fm start
repserver fm stop
repserver_fm

repserver shutdown
repserver notify admin

If the scripts already exist on the local machine as part of another
Replication Server data service, you can create the following asalink to
the script directory instead:

/opt/SUNWCluster/ha/repserver _name

Asroot, create the directory /var/opt/repserver on both nodesif it does not
exist.

Asroot, create afile/var/opt/repserver/repserver_name on both nodesfor
each Replication Server you want to install as a data service on Sun
Cluster, where repserver_name is the name of your Replication Server.
Thisfile should contain only two linesin the following form with no blank
space, and should be readable only by root:

repserver:logicalHost:RunFile:releaseDir: SYBASE OCS
: SYBASE REP

probeCycle:probeTimeout: restartDelay: login/password
where:
e repserver —the Replication Server name.
« logicalHost —the logical host on which Replication Server runs.
* RunFile-the complete path of the runfile.
e releaseDir —the $SY BASE installation directory.

e SYBASE_OCS-the $SYBA SE subdirectory where the connectivity
library islocated.

e SYBASE_REP —the $SYBASE subdirectory where the Replication
Server islocated.

e probeCycle —the number of seconds between the start of two probes
by the fault monitor.

723

Configuring Replication Server for high availability

724

e probeTimeout — time, in seconds, after which a running Replication
Server probe is aborted by the fault monitor, and atimeout condition
iS set.

e restartDelay — minimum time, in seconds, between two Replication
Server restarts. If, inlessthan restartDelay seconds after aReplication
Server restart, the fault monitor again detects a condition that requires
arestart, it triggers a switch over to the other host instead. This
resol ves situations where a database restart does not solve the
problem.

¢ login/password — the login/password the fault monitor uses to ping
Replication Server.

To change probeCycle, probeTimeout, restartDelay, or login/password for
the probe after Replication Server isinstalled as data service, send
SIGINT(2) to the monitor process (repserver_fm) to refresh its memory.

kill -2 monitor process_ id

4 Asroot, create afile /var/opt/repserver/repserver_name.mail on both
nodes, whererepserver_nameisthe name of your Replication Server. This
filelists the UNIX login names of the Replication Server administrators.
The login names should be al in one line, separated by one space.

If the fault monitor encounters any problems that need intervention, thisis
the list to which it sends mail.

5 Register the Replication Server as adata service on Sun Cluster:

hareg -r repserver name \

-b "/opt/SUNWcluster/ha/repserver name" \

-m START NET="/opt/SUNWcluster/ha/repserver name/
repserver start net" \

-t START NET=60 \

-m STOP_NET="/opt/SUNWcluster/ha/repserver name/
repserver stop _net" \

-t STOP_NET=60 \

-m FM_START="/opt/SUNWcluster/ha/repserver name/
repserver fm start" \

-t FM_START=60 \

-m
FM_STOP="/opt/SUNWcluster/ha/repserver name/repserv
er fm stop" \

-t FM_STOP=60 \

[-d sybase] -h logical host

Replication Server

APPENDIX C High Availability on Sun Cluster 2.2

where -d sybaseisrequired if the RSSD isunder HA on the same cluster,
and repserver_name is the name of your Replication Server and must be
in the path of the scripts.

6 Turnonthedataserviceusing hareg -y repserver name.

Administering Replication Server as a data service

This section describes how to start and shut down Replication Server asadata
service, and useful logs for monitoring and troubleshooting.

Data service start/shutdown

Logs

Administration Guide

Once a Replication Server isregistered as data service, use the following to
start Replication Server as a data service:

hareg -y repserver name

This starts Replication Server if it is not aready running, and also starts the
fault monitor for Replication Server.

To shut down Replication Server, use:
hareg - repserver name

Thefault monitor restarts or fails over this Replication Server if itisshut down
or stopped (killed) any other way.

There are several logs you can use for debugging:

* Replication Server log — the Replication Server logs its messages here.
Usethelog to find informational and error messages from Replication
Server. Thelog islocated in the Replication Server Run directory.

e Script log —the data service START and STOP scripts |og messages here.
Usethe log to find informational and error messages that result from
running the scripts. Thelog islocated in /var/opt/repserver/harep.log.

725

Administering Replication Server as a data service

¢ Consolelog—the operating system | ogs messages here. Usethislogto find
informational and error messages from the hardware. Thelogislocated in
/var/adm/messages.

¢ CCD log —the Cluster Configurations Database, which is part of the Sun
Cluster configuration, logs messages here. Use thislog to find
informational and error messages about the Sun Cluster configuration and
health. The log islocated in /var/opt/ SUNWCcl uster/ccd/ccd.log.

726 Replication Server

Glossary

active database

Adaptive Server

application programming
interface (API)

applied function

article

asynchronous procedure
delivery

asynchronous command

Administration Guide

In awarm standby application, a database that is replicated to a standby
database. See also warm standby application.

The Sybaseversion 11.5 and | ater relational database server. If you choose
the RSSD option when configuring Replication Server, Adaptive Server
maintains Replication Server system tables in the RSSD database.

A predefined interface through which users or programs communicate
with each other. Open Client and Open Server are examples of APIsthat
communicate in a client/server architecture. RCL, the Replication
Command Language, is the Replication Server API.

A replicated function, associated with a function replication definition,
that Replication Server delivers from aprimary database to a subscribing
replicate database. The function passes parameter values to a stored
procedure that is executed at the replicate database. See also replicated
function delivery, request function, and function replication definition.

A replication definition extension for tables or stored procedures that can
be an element of a publication. Articles may or may not contain where
clauses, which specify a subset of rows that the replicate database
receives.

A method of replicating, from a source to a destination database, a stored
procedure that is associated with atable replication definition.

A command that a client submits where the client is not prevented from
proceeding with other operations before the compl etion statusis received.
Many Replication Server commandsfunction as asynchronous commands
within the replication system.

727

Glossary

atomic
materialization

autocorrection

base class

bitmap subscription

bulk materialization

centralized database
system

class

class tree

728

A materialization method that copies subscription data from a primary to a
replicate database through the network in a single atomic operation, using a
select operation with aholdlock. No changesto primary data are allowed until
datatransfer is complete. Replicate data may be applied either asasingle
transaction or inincrements of ten rows per transaction, which ensures that the
replicate database transaction log does not fill. Atomic materialization is the
default method for the create subscription command. See also nonatomic
materialization, bulk materialization and no materialization.

Autocorrection is a setting applied to replication definitions, using the set
autocorrection command, to prevent failures caused by missing or duplicate
rowsin acopy of areplicated table. When autocorrection is enabled,
Replication Server converts each update or insert operation into a delete
followed by an insert. Autocorrection should only be enabled for replication
definitions whose subscriptions use nonatomic materialization.

A function-string classthat doesnot inherit function stringsfrom aparent class.
See also function-string class.

A type of subscription that replicates rows based on bitmap comparisons.
Create columns using the int datatype, and identify them as thers_address
datatype when you create a replication definition. When you create a
subscription, compare each rs_address column to a bitmask using a bitmap
comparison operator (&) in the where clause. Rows matching the
subscription’s bitmap are replicated.

A materialization method whereby subscription datain areplicate databaseis
initialized outside of the replication system. For example, data may be
transferred from a primary database using media such as magnetic tape,
diskette, CD-ROM, or optical storage disk. Bulk materialization involves a
series of commands, starting with define subscription. You can use bulk
materialization for subscriptions to table replication definitions or function
replication definitions. See also atomic materialization, nonatomic
materialization, and no materialization.

A database system where data is managed by a single database management
system at a centralized location.

Seeerror class and function-string class.

A set of function-string classes, consisting of two or morelevels of derived and
parent classes, that derive from the same base class. See also function-string
class.

Replication Server

Glossary

client

Client/Server
Interfaces (C/SI)

concurrency

connection

coordinated dump

database

database generation
number

database replication
definition

database server

data definition
language (DDL)

data manipulation
language (DML)

Administration Guide

A program connected to a server in aclient/server architecture. It may be a
front-end application program executed by a user or a utility program that
executes as an extension of the system.

The Sybase interface standard for programs executing in a client/server
architecture.

The ability of multiple clients to share data or resources. Concurrency in a
database management system depends upon the system protecting clientsfrom
conflictsthat arise when datain use by one client is modified by another client.

A connection from a Replication Server to a database. See also Data Server
Interface (DSI) and logical connection.

A set of database dumps or transaction dumps that is synchronized across
multiple sites by distributing an rs_dumpdb or rs_dumptran function through
the replication system.

A set of related data tables and other objectsthat is organized and presented to
serve a specific purpose.

Stored in both the database and the RSSD of the Replication Server that
manages the database, the database generation number is the first part of the
origin queue ID (qid) of each log record. The origin queue ID ensures that the
Replication Server does not process duplicate records. During recovery
operations, you may need to increment the database generation number so that
Replication Server does not ignore records submitted after the database is
reloaded.

A description of a set of database objects—tables, transactions, functions,
system stored procedures, and DDL—for which a subscription can be created.

You can also create table replication definitions and function replication
definitions. See also table replication definition and function replication
definition.

A server program, such as Sybase Adaptive Server, that provides database
management servicesto clients.

The set of commands in a query language, such as Transact-SQL, that
describes data and their relationships in a database. DDL commandsin
Transact-SQL include those using the create, drop, and alter keywords.

The set of commandsin aquery language, such as Transact-SQL, that operates
on data. DML commands in Transact-SQL include select, insert, update, and
delete.

729

Glossary

data server

Data Server Interface
(DSI)

data source

decision support
application

declared datatype

default function
string

dematerialization

derived class

730

A server whose client interface conforms to the Sybase Client/Server
Interfaces and provides the functionality necessary to maintain the physical
representation of areplicated table in a database. Data servers are usually
database servers, but they can a so be any datarepository with theinterface and
functionality Replication Server requires.

Replication Server threads corresponding to a connection between a
Replication Server and a database. DSI threads submit transactions from the
DSI outbound queue to areplicate data server. They consist of a scheduler
thread and one or more executor threads. The scheduler thread groups the
transactions by commit order and dispatches them to the executor threads. The
executor threads map functionsto function strings and execute the transactions
in the replicate database. DSI threads use an Open Client connection to a
database. See al'so outbound queue and connection.

A specific combination of a database management system (DBMS) product
such as arelational or non-relational data server, a database residing in that
DBMS, and the communi cations method used to accessthat DBM S from other
parts of areplication system. See also database and data server.

A database client application characterized by ad hoc queries, reports, and
calculations and few data update transactions.

The datatype of the value delivered to the Replication Server from the
replication agent:

e If thereplication agent delivers a base Replication Server datatype, such
as datetime, to the Replication Server, the declared datatype is the base
datatype.

e Otherwise, the declared datatype must be the UDD for the original
datatype at the primary database.

The function string that is provided by default for the system-provided classes
rs_sqlserver_function_class and rs_default_function_class and classes that
inherit function strings from these classes, either directly or indirectly. Seealso
function string.

The optional process, when a subscription is dropped, whereby specific rows
that are not used by other subscriptions are removed from the replicate
database.

A function-string class that inherits function strings from a parent class. See
also function-string class and parent class.

Replication Server

Glossary

direct route

disk partition

distributed database
system

Distributor

dump marker

Embedded
Replication Server
System Database
(ERSSD)

error action

error class

exceptions log

Failover

Administration Guide

A route used to send messages directly from a source to a destination
Replication Server, with no intermediate Replication Servers. Seeasoindirect
route and route.

See partition.

A database system where datais stored in multiple databases on anetwork. The
databases may be managed by data servers of the same type (for example,
Adaptive Server) or by heterogeneous data servers.

A Replication Server thread (DIST) that hel ps to determine the destination of
each transaction in the inbound queue.

A message written by Adaptive Server in a database transaction log when a
dump is performed. In awarm standby application, when you areinitializing
the standby database with data from the active database, you can specify that
Replication Server use the dump marker to determine where in the transaction
stream to begin applying transactions in the standby database. See also warm
standby application.

The Adaptive Server Anywhere (ASA) database that stores Replication Server
system tables. You can choose whether to store Replication Server system
tables on the ERSSD or the Adaptive Server RSSD. See also Replication
Server System Database (RSSD).

A Replication Server response to a data server error. Possible Replication
Server error actions are ignore, warn, retry_log, log, retry_stop, and
stop_replication. Error actions are assigned to specific data server errors.

A name for a collection of data server error actions that are used with a
specified database.

A set of three Replication Server system tables that holds information about
transactions that failed on a data server. The transactions in the log must be
resolved by a user or by an intelligent application. You can use the
rs_helpexception stored procedure to query the exceptions log.

Sybase Failover alows you to configure two version 12.0 and later Adaptive
Servers as companions. If the primary companion fails, that server’s devices,
databases, and connections can be taken over by the secondary companion.

For more detailed information about how Sybase Failover worksin Adaptive
Server, refer to Using Sybase Failover in a High Availability System, whichis
part of the Adaptive Server Enterprise documentation set.

731

Glossary

fault tolerance

function

function replication
definition

function scope

function string

function-string class

function-string
inheritance

732

For instructions on how to enable Failover support for non-RSSD Replication
Server connections to Adaptive Server, see “ Configuring the Replication
System to Support Sybase Failover” in Chapter 16, “ Replication System
Recovery,” of the Replication Server Administration Guide.

The ability of a system to continue to operate correctly even though one or
more of its component parts is malfunctioning.

A Replication Server object that represents a data server operation such as
insert, delete, select, or begin transaction. Replication Server distributes such
operationsto other Replication Servers as functions. Each function consists of
afunction name and a set of data parameters. In order to execute the function
in a destination database, Replication Server uses function stringsto convert a
function to acommand or set of commands for atype of database. See also
user-defined function, and replicated function delivery.

A description of areplicated function used in replicated function delivery. The
function replication definition, maintained by Replication Server, includes
information about the parameters to be replicated and the location of the
primary version of the affected data. See al'so replicated function delivery.

Therange of afunction’s effect. Functions have replication definition scope or
function-string class scope. A function with replication definition scopeis
defined for a specific replication definition, and cannot be applied to other
replication definitions. A function with function-string class scope is defined
once for afunction-string class and is available only within that class.

A string that Replication Server uses to map a database command to a data
server API. For thers_select and rs_select_with_lock functions only, the string
contains an input template, used to match function strings with the database
command. For al functions, the string also contains an output template, used
to format the database command for the destination data server.

A named collection of function strings used with a specified database
connection. Function-string classes include those provided with Replication
Server and those you have created. Function-string classes can share function
string definitions through function-string inheritance. The three system-
provided function-string classes are rs_sqlserver_function_class,
rs_default_function_class, and rs_db2_function_class. See also base class,
class tree, derived class, function-string inheritance, and parent class.

The ability to share function string definitions between classes, whereby a
derived class inherits function strings from a parent class. See also derived
class, function-string class, and parent class.

Replication Server

Glossary

function-string
variable

function
subscription

generation number

heterogeneous data
servers

high availability (HA)

hibernation mode

hot standby
application

ID Server

inbound queue

indirect route

interfaces file

Administration Guide

Anidentifier used in afunction string to represent avalue that isto be
substituted at run time. Variables in function strings are enclosed in question
marks (7). They represent column values, function parameters, system-defined
variables, or user-defined variables.

A subscription to a function replication definition (used in applied function
delivery).

See database generation number.

Multi-vendor data servers used together in a distributed database system.

Very low downtime. Computer systems that provide HA usually provide
99.999% availability, or roughly five minutes unscheduled downtime per year.

A Replication Server state in which all DDL commands, except admin and
sysadmin commands, are rejected; all routes and connections are suspended,;
most service threads, such as DSI and RS, are suspended; and RSI and
RepAgent (or LTM) users are logged off and not allowed to log on. Used
during route upgrades, and may be turned on for a Replication Server to debug
problems.

A database application in which the standby database can be placed into
service without interrupting client applications and without losing any
transactions. See also warm standby application.

One Replication Server in areplication systemisthe ID Server. In addition to
performing the usual Replication Server tasks, the |D Server assignsunique |D
numbers to every Replication Server and database in the replication system,
and maintains version information for the replication system.

A stable queue used to spool messages from a Replication Agent to a
Replication Server.

A route used to send messages from a source to a destination Replication
Server, through one or more intermediate Replication Servers. See also direct
route and route.

A file containing entries that define network access information for server
programsin a Sybase client/server architecture. Server programs may include
Adaptive Servers, SQL Servers, gateways, Replication Servers, and
Replication Agents such as LTM for SQL Server. Theinterfacesfile entries
enable clients and servers to connect to each other in a network.

733

Glossary

latency

local-area network
(LAN)

locator value

logical connection

login name

Log Transfer
Language (LTL)

Log Transfer
Manager (LTM)

maintenance user

materialization

materialization
queue

missing row

734

The measure of the time it takes to distribute to a replicate database a data
modification operation first applied in a primary database. The time includes
Replication Agent processing, Replication Server processing, and network
overhead.

A system of computers and devices, such as printers and terminals, connected
by cabling for the purpose of sharing data and devices.

The value stored in the rs_locater table of the Replication Server’s RSSD that
identifies the latest log transaction record received and acknowledged by the
Replication Server from each previous site during replication.

A database connection that Replication Server maps to the connections for the
active and standby databases in a warm standby application. See a'so
connection and warm standby application.

The name that a user or a system component such as Replication Server uses
to log in to a data server, Replication Server, or Replication Agent.

A subset of the Replication Command Language (RCL). A Replication Agent
such as RepAgent or LTM for SQL Server uses LTL commands to submit to
Replication Server the information it retrieves from primary database
transaction logs.

The Replication Agent program for Sybase SQL Server. See aso replication
agent and RepAgent thread.

A data server login name that Replication Server usesto maintain replicate
data. In most applications, maintenance user transactions are not replicated.

The process of copying data specified by a subscription from a primary
database to areplicate database, thereby initializing the replicate table.
Replicate data can be transferred over a network, or, for subscriptions
involving large amounts of data, loaded initially from media. See also atomic
materialization, bulk materialization, no materialization, and nonatomic
materialization.

A stable queue used to spool messages related to a subscription being
materialized or dematerialized.

A row missing from areplicated copy of atable but present in the primary
table.

Replication Server

Glossary

mixed-version
system

more columns

multi-site availability
(MSA)

name space

nonatomic
materialization

network-based
security

no materialization

online transaction
processing (OLTP)
application

Administration Guide

A replication system containing Replication Servers of different software
versions that have different capabilities based on their different software
versions and site versions. Mixed-version support is available only if the
system version is 11.0.2 or greater.

For example, areplication system containing Replication Serversversion 11.5
or later and version 11.0.2 is a mixed-version system. A replication system
containing Replication Servers of releases earlier than release 11.0.2 isnot a
mixed-version system, because any newer Replication Serversarerestricted by
the system version from using certain new features. See also site version and
system version.

Columnsin areplication definition exceeding 250, but limited to 1024. More
columns are supported by Replication Server version 12.5 and later.

Methodology for replicating database objects—tables, functions, transactions,
system stored procedures, and DDL from the primary to the replicate database.
See also database replication definition.

The scope within which an object name must be unique.

A materialization method that copies subscription datafrom a primary to a
replicate database through the network in a single operation, without a
holdlock. Changesto the primary table are allowed during data transfer, which
may cause temporary inconsistencies between replicate and primary databases.
Datais applied in increments of ten rows per transaction, which ensures that
the replicate database transaction log does not fill. Nonatomic materialization
is an optional method for the create subscription command. See also
autocorrection, atomic materialization, no materialization, and bulk
materialization.

Secure transmission of data across a network. Replication Server supports
third-party security mechanismsthat provide user authentication, unified login,
and secure message transmission between Replication Servers.

A materialization method that lets you create a subscription when the
subscription data already exists at the replicate site. Use the create subscription
command with the without materialization clause. You can use this method to
create subscriptions to table replication definitions and function replication
definitions. See also atomic materialization and bulk materialization.

A database client application characterized by frequent transactions involving
data modification (inserts, deletes, and updates).

735

Glossary

Origin Queue ID (qgid)

orphaned row

outbound queue

parallel DSI

parameter

parent class

partition

physical connection

primary data

primary database

primary fragment
primary key

primary site

principal user

projection

736

Formed by the RepAgent, the gid uniquely identifies each log record passed to
the Replication Server. It includes the date and timestamp and the database
generation number. See also database generation number.

A row in areplicated copy of atablethat does not match an active subscription.

A stable queue used to spool messages. The DSI outbound queue spools
messages to areplicate database. The RSI outbound queue spools messages to
areplicate Replication Server.

Configuring a database connection so that transactions are applied to a
replicate data server using multiple DSI threads operating in parallel, rather
than asingle DS thread. See also connection and Data Server Interface (DSI).

Anidentifier representing avalue that is provided when a procedure executes.
Parameter names are prefixed with an @ character in function strings. When a
procedureis called from afunction string, Replication Server passes the

parameter values, unaltered, to the data server. See a'so searchable parameter.

A function-string classfromwhich aderived classinheritsfunction strings. See
also function-string class and derived class.

A raw disk partition or operating system file that Replication Server uses for
stable queue storage. Only use operating system filesin a test environment.

See connection.

The definitive version of a set of datain areplication system. The primary data
is maintained on a data server that is known to all of the Replication Servers
with subscriptions for the data.

Any database that contains data that is replicated to another database via the
replication system.

A horizontal segment of atable that holdsthe primary version of a set of rows.
A set of table columns that uniquely identifies each row.

A Replication Server where afunction-string classor error classisdefined. See
error class and function-string class.

The user who starts an application. When using network-based security,
Replication Server logsin to remote servers as the principal user.

A vertical slice of atable, representing a subset of the table's columns.

Replication Server

Glossary

publication

publication
subscription

published datatype

query

quiescent

remote procedure
call (RPC)

RepAgent thread

replicate database

replicated function
delivery

replicated stored
procedure

Administration Guide

A group of articles from the same primary database. A publication lets you
collect replication definitions for related tables and/or stored procedures and
then subscribe to them asagroup. You collect replication definitions as articles
in apublication at the source Replication Server and subscribe to them with a
publication subscription at the destination Replication Server. See aso article
and publication subscription.

A subscription to a publication. See also article and publication.

The datatype of the column after the column-level trandation (and before a
class-level translation, if any) at the replicate data server. The published
datatype must be either a Replication Server base datatype or aUDD for the
datatypein the target data server. If the published datatype is omitted from the
replication definition, it defaults to the declared datatype

In a database management system, a query is arequest to retrieve data that
meets a given set of criteria. The SQL database language includes the select
command for queries.

A quiescent replication system isonein which all updates have been
propagated to their destinations. Some Replication Server commands or
procedures require that you first quiesce the replication system.

A request to execute aprocedure that residesin aremote server. The server that
executes the procedure could be a Adaptive Server, a Replication Server, or a
server created using Open Server. The request can originate from any of these
servers or from aclient application. The RPC request format is a part of the
Sybase Client/Server Interfaces.

Thereplication agent for Adaptive Server databases. RepAgent isan Adaptive
Server thread; it transfers transaction log information from the primary
database to a Replication Server for distribution to other databases.

Any database that contains datathat is replicated from another database viathe
replication system.

A methaod of replicating, from a source to a destination database, a stored
procedure that is associated with afunction replication definition. See also
applied function, request function, and function replication definition.

An Adaptive Server stored procedure that is marked as replicated using the
sp_setrepproc Or the sp_setreplicate System procedure. Replicated stored
procedures can be associated with function replication definitions or table
replication definitions. See also replicated function delivery and
asynchronous procedure delivery.

737

Glossary

replicated table

replication agent

Replication
Command Language
(RCL)

replication definition

Replication Server

Replication Server
Interface (RSI)

Replication Server
Manager (RSM)

Replication System
Administrator

Replication Server
System Database
(RSSD)

738

A table that is maintained by Replication Server, in part or in whole, in
databases at multiple locations. Thereis one primary version of the table,
which is marked as replicated using the sp_setreptable or the sp_setreplicate
system procedure; all other versions are replicated copies.

A program or module that transfers transaction log information representing
modifications made to primary data from a database server to a Replication
Server for distribution to other databases. RepAgent isthe replication agent for
Adaptive Server databases. LTM (Log Transfer Manager) is the replication
agent for SQL Server databases.

The commands used to manage information in Replication Server.

Usually, adescription of atable for which subscriptions can be created. The
replication definition, maintained by Replication Server, includesinformation
about the columns to be replicated and the location of the primary version of
the table.

You can also create function replication definitions; sometimestheterm “table
replication definition” is used to distinguish between table and function
replication definitions. See also function replication definition.

The Sybase server program that maintainsreplicated data, typically onaLAN,
and processes data transactions received from other Replication Serverson the
same LAN or on aWAN.

A thread that logs in to a destination Replication Server and transfers
commands from the RSI outbound stable queue to the destination Replication
Server. Thereisone RS| thread for each destination Replication Server that is
arecipient of commands from a primary or intermediate Replication Server.
See also outbound queue and route.

An application for managing and monitoring areplication system and its
components. Includes status and monitoring functions, diagnostics and
troubl eshooting functions, asynchronous notification of user-defined events,
and operational control over many aspects of the system.

The System Administrator that manages routine operations in the Replication
Server.

The Adaptive Server database containing a Replication Server system tables.
You can choose whether to store Replication Server system tableson the RSSD
or the Adaptive Server Anywhere (ASA) ERSSD. See also Embedded
Replication Server System Database (ERSSD).

Replication Server

Glossary

Replication Server
system Adaptive
Server

replication system

replication system
domain

request function

route

route version

row migration

SQL Server

schema

searchable column

searchable
parameter

Administration Guide

The Adaptive Server with the database containing a Replication Server’s
system tables (the RSSD).

A data processing system where data is replicated in multiple databases to
provide remote users with the benefits of local data access. Specifically, a
replication system that is based upon Replication Server and includes other
components such as Replication Agents and data servers.

All replication system components that use the same ID Server.

A replicated function, associated with afunction replication definition, that
Replication Server delivers from areplicate database to a primary database.
The function passes parameter values to a stored procedure that is executed at
the primary database. See also replicated function delivery, request function,
and function replication definition.

A one-way message stream from a source Replication Server to a destination
Replication Server. Routes carry datamodification commands (including those
for RSSDs) and replicated functions or stored procedures between Replication
Servers. See also direct route and indirect route.

The lower of the site version numbers of the route’s source and destination
Replication Servers. Replication Server version 11.5 and later use the route
version number to determine which datato send to the replicate site. See also
site version.

The process whereby column value changesin rowsin aprimary version of a
table cause corresponding rowsin areplicate version of the tableto beinserted
or deleted, based on comparison with values in a subscription’s where clause.

The Sybase relational database pre-11.5 server.

The structure of the database. DDL commands and system procedures change
system tables stored in the database. Supported DDL commands and system
procedures can be replicated to standby databases when you use Replication
Server version 11.5 or later and Adaptive Server version 11.5 or later.

A column in areplicated table that can be specified in the where clause of a
subscription or article to restrict the rows replicated at a site.

A parameter in areplicated stored procedure that can be specified in the where
clause of a subscription to help determine whether or not the stored procedure
should be replicated. See also parameter.

739

Glossary

secondary
truncation point

site

site version

software version

Stable Queue
Manager (SQM)

Stable Queue

Transaction (SQT)

interface

stable queues

standalone mode

standby database

stored procedure

740

Seetruncation point.

An installation consisting of, at minimum, a Replication Server, data server,
and database, and possibly a Replication Agent, usually at a discrete
geographic location. The components at each site are connected over a WAN
to those at other sitesin areplication system. See also primary site.

Theversion number for anindividual Replication Server. Oncethe site version
has been set to a particular level, the Replication Server enables features
specific to that level, and downgrades are not allowed. See also software
version, route version, and system version.

The version number of the software release for an individual Replication
Server. See also site version and system version.

A thread that manages the stable queues. There is one Stable Queue Manager
(SQM) thread for each stable queue accessed by the Replication Server,
whether inbound or outbound.

A thread that reassembles transaction commands in commit order. A Stable
Queue Transaction (SQT) interface thread reads from inbound stable queues,
puts transactions in commit order, then sends them to the Distributor (DIST)
thread or aDSl thread, depending on which thread required the SQT ordering
of the transaction.

Store-and-forward queues where Replication Server stores messages destined
for aroute or database connection. Messageswritten into astable queue remain
there until they can be delivered to the destination Replication Server or
database. Replication Server builds stable queues using its disk partitions. See
alsoinbound queue, outbound queue, and materialization queue.

A specia Replication Server mode used for initiating recovery operations.

In awarm standby application, a database that receives data modifications
from the active database and serves as abackup of that database. Seeasowarm
standby application.

A collection of SQL statements and optiona control-of-flow statements stored
under aname in a Adaptive Server database. Stored procedures supplied with
Adaptive Server are called system procedures. Some stored procedures for
guerying the RSSD are included with the Replication Server software.

Replication Server

Glossary

subscription

subscription
dematerialization

subscription
materialization

subscription
migration

Sybase Central

symmetric
multiprocessing
(SMP)

synchronous
command

system function

system-provided
classes

system version

table replication
definition

Administration Guide

A request for Replication Server to maintain areplicated copy of atable, or a
set of rowsfrom atable, in areplicate database at a specified location. You can
a so subscribe to afunction replication definition, for replicating stored
procedures.

See dematerialization.
See materialization.
Seerow migration.

A graphical tool that provides a common interface for managing Sybase and
Powersoft products. Replication Server uses Replication Server Manager as a
Sybase Central plug-in. See also Replication Server Manager (RSM).

On amultiprocessor platform, the ability of an application’s threadsto runin
parallel. Replication Server supports SMP, which can improve server
performance and efficiency.

A command that a client considers complete only after the completion statusis
received.

A function that is predefined and part of the Replication Server product.
Different system functions coordinate replication activities, such asrs_begin,
or perform data manipulation operations, such asrs_insert, rs_delete, and
rs_update.

Replication Server provides the error classrs_sglserver_error_class and the
function-string classes rs_sglserver_function_class, rs_default_function_class,
andrs_db2_function_class. Function strings are generated automatically for the
system-provided function-string classes and for any derived classesthat inherit
from these classes, directly or indirectly. See also error class and function-
string class.

The version number for areplication system that represents the version for
which new features are enabled, for Replication Servers of release 11.0.2 or
earlier, and bel ow which no Replication Server can be downgraded or install ed.
For aReplication Server version 11.5, your use of certain new featuresrequires
adsite version of 1150 and a system version of at least 1102. See also mixed-
version system, site version, and software version.

Seereplication definition.

741

Glossary

table subscription

thread

transaction

Transact-SQL

truncation point

user-defined
function

variable

version

warm standby
application
wide-area network

(WAN)

wide columns

742

A subscription to atable replication definition.

A process running within Replication Server. Built upon Sybase Open Server,
Replication Server has a multi-threaded architecture. Each thread performs a
certain function such as managing a user session, receiving messages from a
Replication Agent or another Replication Server, or applying messagesto a
database. See also Data Server Interface (DSI), Distributor, and Replication
Server Interface (RSI).

A mechanism for grouping statements so that they are treated as a unit: either
all statements in the group are executed or no statementsin the group are
executed.

The relational database language used with Adaptive Server. It is based on
standard SQL (Structured Query Language), with Sybase extensions.

An Adaptive Server database that holds primary data has an active truncation
point, marking the transaction log location where Adaptive Server has
completed processing. Thisis the primary truncation point.

The RepAgent for an Adaptive Server database maintains a secondary
truncation point, marking the transaction log location separating the portion of
the log successfully submitted to the Replication Server from the portion not
yet submitted. The secondary truncation point ensures that each operation
enters the replication system before its portion of the log is truncated.

A function that allows you to create custom applications that use Replication
Server to distribute replicated functions or asynchronous stored procedures
between sites in areplication system. In replicated function delivery, a user-
defined function is automatically created by Replication Server when you
create a function replication definition.

See function-string variable.
Seemixed-version system, site version, software version, and system version.

An application that employs Replication Server to maintain a standby database
for adatabase known as the active database. If the active database fails,
Replication Server and client applications can switch to the standby database.

A system of local-area networks (LANS) connected together with data
communication lines.

Columnsin areplication definition containing char, varchar, binary, varbinary,
unichar, univarchar, or Javainrow data that are wider that 255 bytes. Wide
columns are supported by Replication Server version 12.5 and later.

Replication Server

Glossary

wide data

wide messages

Administration Guide

Wide datarows, limited to the size of the datapage on the dataserver. Adaptive

Server supports page sizes of 2K, 4K, 8K, and 16K. Wide datais supported by
Replication Server version 12.5 and later.

Messages larger that 16K that span blocks. Wide messages are supported by
Replication Server version 12.5 and later.

743

Glossary

744 Replication Server

Index

Numerics

1024 columns, limit to expressions in where clause
536

A

abort switch command 511, 512
abstract plans, replication of 484
activate subscription command 369, 394, 399
for publications 394
publication subscription example 399
with suspension at replicate only clause 540
with suspension clause 540
active database 480
managing old active after switching 513
restarting clients 512
Adaptive Server
described 28
error handling 619
login name for Replication Server access 201
add partition command 47
adding
aserver 79
ID server domains 97
primary keys 302
Replication Serversto existing systems 96
RSSDLTM 152, 710
searchable columns 304
admin commands 511
described 430
admin set_log_name command 702
admin who command 700
Advanced Security option 242
alarm daemon (dAlarm) 549
allow connectionscommand 672

alter connection command 133, 172, 178, 230, 231,

241, 324

assigning databasesto function-string classes 455

Administration Guide

changing maintenance user password 201
disabling password encryption 206
alter database replication definition command 414
alter function command 690
alter function replication definition command 256,
299, 335, 345
alter function string command 466
mapping user-defined functions 692
replacing default function string 681
alter logical connection command 520
alter replication definition command 325
ater route command 101, 114
changing passwords 201
disabling password encryption 206
alter table command support for warm standby 532
alter user command
changing passwords 205
application models
consolidated replicate 12
redistributed corporaterollup 14
replicated consolidated replicate 14
applied functions
described 336
prerequisites for implementing 332
settingup 338
applied stored procedures
prerequisites for implementing 681
settingup 682
article subscriptions, creating 396
articles
adding to publication 317
asobjectsin Sybase Centra 82
definition 309
displaying information about 316
dropping 318
assign actioncommand 618
asynchronous I/O daemon (dAIO) 549
asynchronous stored procedures
adding parametersto 690
and non-unique user-defined function name 693

745

Index

applied 679

executing 677

request stored procedures 680

user-defined functions 689
asynchronous transaction replication 2
atomic materialization

create subscription command for 373

described 351, 352

text and image columns 385

in warm standby applications 538
autocorrection

bulk materialization 361

enabling for nonatomic materialization 354, 367
automatic backup, ERSSD 101

B

Back control 69
backup, ERSSD 108
bars
displaying 68
hiding 68
batch commands in function strings 470
batch configuration parameter 180, 555
batch Itl configuration parameter 123
batch_begin configuration parameter 180
batch_sz LTM configuration parameter 699
bep utility program 358, 499, 540
bitmap subscriptions 387
bulk materialization
autocorrection 361
define subscription command 375
described 352, 355
for replicated functions 344
in warm standby applications 539
methods 356
publication subscriptions 398
refreshing publication subscriptions 400
simulating atomic materialization 359
simulating nonatomic materialization 361
stopping primary updates 357
taking asnapshot 357
buttons
Properties 73
toolbar 68

746

C

case, in RCL commands xxvii
certificate authority 242
certificates 242
changing
an object’s properties 72
database connections 177
existing replication system 96, 99
function strings 440
ID Server login name and password 201
replication definitions 294
Replication Server login names for the RSSD LTM
706
Replication Server login names for the RSSD
RepAgent 200
routes 161
RSSD primary or maintenance user 199
searchable columns 307
user passwords 205
character sets, conversion 181
check publication command 311, 315
check subscription command 369, 378, 395
after executing switch active command 539, 540
example 401
for articles 395
for publication subscriptionsand articles 401
for publications 395
CipherSuites 243
classlevel trandations 322
existing connections 324
new connections 322
system-defined variables 325
with column-level trandations 330
client application
described 31
restarting after active switch 512
Client/Server Interfaces (C/Sl), client applications for
31
closing aproperty sheet 73
clusters
Sun 717
terminology 718
column-level trandations 325
creating 326
multiple replication definitions 329
columns

Replication Server

changing in replicated tables 303, 307
deleting from primary or replicate table 307
IDENTITY 293
rs_addressdatatype 387
specifying for replication definition 260
command_retry command configuration parameter
180
commands
configure replication server 107, 603
hareg 725
sysadminerssd 106, 107
concurrency control, described 48
configuration file 96
LTM 702, 705
Replication Server 96
rs_subcmp program 391
configuration parameters
affecting performance 551
ERSSD 107
for parallel DSI 567
for replication server 100
rs_config systemtable 551
send_standby 416
viewing 130
configuration star 144
configure connection command, setting save interval
636
configure logical connection command 530
setting DS| queue saveinterval 530
setting materialization queue saveinterval 531
configurereplication server command 100, 101, 107,
222,227, 233, 603
configure route, setting saveinterval 634
Connect control 69
connect database configuration parameter 123
connect dataserver configuration parameter 123
connect source permission 207
connecting
to areplication environment 76-78
to an RSM Server domain 7678
connecting to Replication Server, using network-based
security 235, 237
connection manager daemon (ACM) 549
connections
defined 40
network-based security for 230

Administration Guide

Index

setting saveinterval 635
consistency
maintaining for replicate databases 636
verifying for subscriptions 390
consolidated replicate application model 12
Contentstab 58
context menus 68
context-sensitivehelp 59
context-sensitive menus, shortcutto 68
controls
didogbox 66
tab 72
conventions
document style xxv
examples xxv
icons xxviii
syntax statements ~ xxv
coordinated dumps
creating 636
loading primary and replicate databases 646
recovering databases 646
Copy control 69
counter names 599
counter status options 600
counter types 599
counter values
viewing 606
counters 597-608
averagevalue 599
cumulativetotal 599
dSTATS daemon thread 608
intrusive 602
last value 599
maximum value 599
overview 598
resetting 608
status options 600
viewing information about 605
create articlecommand 311, 313
create connection command 172, 174, 455
create database replication definition command 413
createerror class 615
create function command 689
create function replication definition command 335,
339
create function string classcommand 451, 453

747

Index

create function string command 364, 464
create logical connection command 496
create object permission 207
create publication 311, 312
create replication definition command 255, 258, 325, 326
create routecommand 149
create subscription command
and nonatomic materiadization 374
369, 394, 396
and atomic materialization 373
examplefor publications 396
for publications 314, 394
create user command 204
adding Replication Server login name for RSSD LTM

706
adding Replication Server login name for RSSD
RepAgent 200

creating
database connections 174
function replication definitions
function strings 464
function-string classes 451
multiple ID Server domains 98
replicate tables 381
replication definitions 248, 256
Replication Server login names 204
subscriptions 202, 366
user-defined functions 689
creating areplication environment 78
creating an RSM Server domain 78
current_rssd_version configuration parameter 100
Cut control 69

339, 342

D

daemons

darm (dAlarm) 549
asynchronous /O (dAIO) 549
connection manager (ACM) 549
counter (ASTATS) 549
described 544

miscellaneous 549

recovery (dREC) 549
subscription retry (dSUB) 549
version (dVERSION) 549

748

data availability
fault tolerance 3
local access 3
Data Definition Language (DDL) 406
replicating 422
data limits filter mode configuration parameter 123
data server
and C/S| support 16
error handling 614, 619
ID numbers 98
log truncation 698
maintenance user login names 20
support for heterogeneous 16, 28
suspending accessto 177
data service
Replication Server as 725
start/shuntdown 725
Database Administrator, roleof 22
database connections
atributes 174
changing attributesof 177
configuring for parallel DSI 567
creating 174
displaying 194
dropping 192
information for 174
managing 169, 189
monitoring 194
resuming 177
suspending 177
for warm standby applications 481
database generation numbers
adjusting during database recovery 675
and dumps 676
gid 675
database logs
determining for reload 674
recovering messages off-line 640
recovering messagesonline 642
reloading 676
truncated primary recovery 642, 645
truncation 49
database replication definitions 413
asobjectsin Sybase Central 82
database replication filters 415
database schema, replication definitions 299

Replication Server

Database Subscription Resolution Engine (DSRE)
415
database subscriptions
atering 420
asobjectsin Sybase Central 83
dropping 420, 421
managing 418
materiaization 419
with table and function subscriptions 421
databases
active 481
assigning function-string classes 455
customizing operations 435, 473
fallures 646
logical 481
managed by Replication Server 194
preparing for replication 169, 703
setting log recovery 672
standby 481
datatype classes
rs db2 dt class 325
rs_informix_dt_class 325
rs msss dt_class 325
rs oracle dt_class 325
rs sglserver_dt class 325
datatype definitions 327
for DB2 datatypes 328
for Informix datatypes 329
for Microsoft SQL Server datatypes 328
for Oracle datatypes 329
datatypes
IDENTITY columns 293
rawobject and rawobject inrow 275, 280
rs address 292, 387
text and image 487
db_packet_size configuration parameter 180, 555
DB2 databases, function-string class 17, 436
db2_function_class, described 446
dbcce settrunc Transact-SQL command 642
deadlock detection, parallel dsi 585
debugging
high availability 725
declared datatypes 326
default function strings, restoring 469
default partition allocation mechanism 594
define subscription command 369, 394, 398

Administration Guide

and bulk materiaization 375
creating publication subscriptions 398
for publications 394
publications subscription example 398
using with replicated functions 340
Delete control 69
deleting
transactions in the exceptionslog 624
deleting an object 74
shortcutsto 75
derived function-string class, described 450
Details control 69
dialog boxes
refreshing 70
Table Properties 72
tabson 72
typesof 71
direct routes 144
directory services 37, 705
Disconnect control 69
disconnecting
from areplication environment 78
from RSM Server 78
disk partitions 593
disk_affinity configuration parameter
563
displaying
assigned actions for error numbers 619
bars 68
database connections 194
databases with subscriptions 390
DSl thread status 195
error classinformation 618
function-related information 472
icons 68
replication definitions 299
RSl thread status 166
subscription information 390
transactions in the exceptionslog 622
users of replication system 213
users’ permissions 214
displays
updating 70
distributed data models
corporaterollup 9
customdesign 9

Index

151, 180, 556,

749

Index

distributed primary fragments 9
redistributed corporaterollup 10
distributed database system and replication server 4
distributed primary fragments, consolidated replicate
application model 14
distributor thread (DIST) 185, 558
described 546
disabling 520
drag-and-drop shortcuts 65
drop articlecommand 312, 318
drop connection command 114, 193, 513
drop database replication definition command 415
drop error class 616
drop function command 691
drop function replication definition 346
drop function replication definition command 335
drop function string classcommand 456
drop function string command 467
drop logical connection command 523
drop publication command 311, 317, 318
drop replication definition command 256, 305
drop route command 114, 115
drop subscription command 113, 369, 395, 400
example 400
exampleof 400
for articles 395
for publications 395
function replication definitions 379
table replication definitions 379
drop user, dropping login names 205
drop_repdef clause 318, 319
Drop-down hierarchy control 69
dropping
database connections 192
databases from the ID Server 193
function replication definitions 346
function string class 456
function strings 467
logical database connections 523
logical databases fromthe ID Server 523
primary keys 302
replication definitions 305
Replication Server login names 205
Replication Serversfrom existing system 112, 117
routes 163
searchable columns from the searchable columns list

750

301, 308
subscriptions 203
user-defined functions 691
DSl threads
described 45, 547
detecting duplicate transactions 625
detecting losses 670
displaying 195
executor 548, 570
handling losses 671
pardlel 566, 591
scheduler 45, 548, 570
for standby database 508
suspending to load bulk materialization data 540
dsi_charset_convert configuration parameter 181
dsi_check_lock_wait configuration parameter 181
dsi_cmd_batch_size configuration parameter 181, 556
dsi_cmd_batch size parameter 561
dsi_cmd_separator configuration parameter 181
dsi_commit_check_locks_intrvl configuration parameter
181, 556, 567
dsi_commit_check_locks |log configuration parameter
568
dsi_commit_check_locks max configuration parameter
568
dsi_commit_control configuration parameter 182,
556, 568
dsi_exec_request_sproc configuration parameter 182
dsi_fadeout_time configuration parameter 182
dsi_ignore_underscore configuration parameter 182
dsi_ignore_underscore_name configuration parameter
568
dsi_keep_triggers configuration parameter 182
dsi_large xact_sizeconfiguration parameter 182, 556,
568
dsi_max_cmds_to_log configuration parameter 182
dsi_max_text_to_log configuration parameter 183
dsi_max_xacts_in_group configuration parameter 556
dsi_num_large xact_thread configuration parameter
568
dsi_num_large xact_threads configuration parameter
183, 556
dsi_num_threads configuration parameter 183, 556,
568
dsi_partitioning_rule configuration parameter 183,
557, 568

Replication Server

dsi_replication configuration parameter 183

dsi_serialization_method configuration parameter
184, 557, 569

dsi_sgl_data_style configuration parameter 184

dsi_sqt_max_cache_size configuration parameter

185, 557

dsi_text_convert_multiplier configuration parameters
185

dsi_text_max_xacts in_group configuration parameter
182

dsi_xact_group_size configuration parameter 185,

557
dSTATS daemon 549, 608

dump command 358
dump database command 504, 637
dump marker option for rs_init program 501, 514
dump transaction command 504, 637
dump_load configuration parameter 185
dumps
creating 636
database generation numbers 676
determining for reload 674
initializing warm standby databases 499, 504
transaction timestamp 674

E

edges

topology view 84, 85

edit menu 67

empty function strings, creating 470
enablereplication marker 499

enabling flushing 602

enabling RepAgent 121

enabling sampling 601

encrypted passwords

sending 202

encryption

disabling for Replication Server 206, 707
enabling for Replication Server 206, 707
error classes

changing primary Replication Server 617
creating 615

dropping 616

initializing 616

Administration Guide

Index

Open Server gateway 17
rs sglserver_error_class 615
error handling
assigning actions 618
dataserver 615, 619
genera 609
LT™M 712
Replication Server 610, 712
system transactions 626
error log files
beginning anew Replication Server log file 613
described 610
displaying current log filename 613
log filefor LTM 701
LTM 613,701
Replication Server 426, 610
error messages
format 611
Replication Server login name 429
severity levels 611
system transactions 626
errors
log file for Replication Server 426
standard error output 426, 702
errsd_backup_dir 107
errsd_backup_interval 107
errsd_backup_start time 107
ERSSD
automatic backup 101
created by rs_init program 97
mediafailure, recovery from 110
recovery instructions 109
recovery procedures 109
useisgl to execute 92
ERSSD (Embedded Replication Server System
Database) 105
ERSSD (Embedded Replication Server System
Database), configuring 106
ERSSD backup directory path 106
ERSSD configuration parameters 107
ERSSD databasefile path 106
ERSSD transaction log filepath 106
ERSSD transaction log mirror filepath 106
ERSSD, backup directory files 108
ERSSD, configuration parametersin rs_init table 100
ERSSD, files, moving 107

751

Index

ERSSD, users 108
erssd_backup_start_date 107
establishing areplication environment 78
establishing an RSM Server domain 78
examples

assigning domain ID numbers 98

atomic materialization 353

DSl loss detection 670

replication definition 258

routing 151

rs_subcmp configuration file 391

SQM loss detection 669

style conventions xxv

warm standby application 507
exceptions log

accessing 622

deleting transactions 624

displaying transactions 622

exceptionshandling 620

transactions writtento 49
exec_cmds_per_timeslice configuration parameter 185,

551, 557, 562
exec_sgm_write_request_limit configuration parameter
185, 551, 558

exec_sgm_write request_limit parameter 562
executing

RCL commands 91

scriptswithisgl 93
extended limits 129, 269, 275

more columns 270

wide columns 270

widedata 270

wide messages 271

F

failed transactions

handling 620, 624

processfor resolving 621
failover, support for in Replication Server 628
failure

dataserver 609

network 609
fault tolerance, achieving 3
filemenu 67

752

files
interfaces 38, 79, 704
LTM configuration 705
LTM errorlog 701
moving, ERSSD 107
Replication Server configuration 96
Replication Server error log 426
Replication Server runfile 94
RSM.Servers 202
sgl.ini 79
standard error output 426, 702
findtab 59
finding current saveinterval 633
flushed values
viewing 607
flushing
for connection parameters 604
for route parameters 604
multithreaded modules 604
resetting after 602
setting intervalsfor 603
foldericons 62
folders
topology 85
for new articlesclause 397
Formatting, RCL commands ~ xxvii
function replication definitions
commands for managing 335
sending parameters to standby database 536
subscribingto 344
function scope, described 439
function strings
changing 440
changing replication definitions 300
creating 464
creating empty 470
customizing 423
defined 42
defining multiple commands 470
described 442
dropping 467
examples 465
for Javacolumns 281
generated for standby databases 484
input templates 457
managing 457, 471

Replication Server

none 476
output templates 457
remapping table and column names 470
restoring default 469
restoring defaults with output template 469
updating 466
variables 42, 462
writetext 476
functions
described 437
function-string classes 323
assigning to databases 455
changing the primary Replication Server 454
creating 451
defined 43
described 445
dropping 456
for Adaptive Server databases 17
for DB2 databases 17, 436
managing 450, 454
open architecture 17
rs_default_function_class 484
rs_informix_function_class 323
rs msss function_class 323
rs_oracle function class 323
rs sqlserver_function_class 323
function-string inheritance 450

G

grant command 171, 207, 212, 506
graphicicons xxviii

H

hafailover configuration parameter, RepAgent 123
ha _failover configuration parameter 103, 105, 631
hareg command 725
HDS. See heterogeneous datatype support
help
context-sensitive 59
for Replication Server plug-in
menu 68
search 59

57-59

Administration Guide

toolbar buttons 69
topic 57
help contents 58
helpindex 59
heterogeneous data servers 423

asobjectsin Sybase Central 82
319-330

heterogeneous datatype support
class-level trandations 322
column-level trandations 325
dataservers 319
function-string classesfor 323
overview 320
procedurefor 321

hiding
bars 68
icons 68

high availability ~ 717-726

configuring Replication Server for
configuring Sun Cluster for 720

installing Replication Server for
scripts 719

technology overview 719
terminology 718
hints 595

I

icons xxviii
displaying 68
folder 62
hiding 68
object 62

ID numbers
data servers 98
Replication Server 98

ID Server 96
adding server domains 97
dropping a database from 193
dropping alogical database from
guidelines 98
ID numbers 99
loginname 27
login name and password 200
network-based security for 233
requirements 27

Index

720

721

523

753

Index

specifying domain ID numbers 98
id_msg_confidentiality parameter 233
id_security_mechanism parameter 233
id_server configuration parameter 100
identifiers

case sengitivity xxvii
IDENTITY columns 293
ignore loss command

handling losses 671

ignoring SQM and DSl losses 672

ignoring SQM loss after setting log recovery 673

and warm standby applications 542
image datatype

changing replication for 288

LTM shutdownand 289

overview of replication 283
inbound queue

defined 44

displaying reader threads 516

multiple reader threads 521
inconsistencies

correcting 391

locating 391

occurring intables 390

resulting from skip transaction clause 189
index tab 59
indirect routes 145
informational messages

format 611
init_sgm_write_delay configuration parameter 552
init_sgm_write_max_delay configuration parameter 552
input templates, example 461
installing Replication Server

asadataservice 722

forHA 721
interfacesfile 38, 79, 704

checking for accuracy 428

defined 38

modifying for warm standby application 517

requirements 38, 704
intrusive counters 602

TranTimeAve 602

TranTimeLast 602

TranTimeMax 602
isql interactive SQL utility 92, 202

executing RCL commands 91

754

executing scripts 93
to execute ERSSD 92
verifying server status 429

J

Java columns
function strings 281
Java datatypes 280

K

keyboard shortcuts 66
keytab file 222,235

L

language
function string output templates 459
Large lcon control 69
large messages 274
large transactions 570
LDAPserver 39
Open Client/Server 40
libtcl.cfg file 217
List control 69
load database command 504
load transaction command 504
loading
primary database from dumps 647
log recovery
detecting losses 673
setting for databases 672
log transfer
resuming 133
suspending 132, 133
Log Transfer Language (LTL) 29
log truncation, Adaptive Server 49
logical connection
configuring materialization queue save interval
530
configuring saveinterval 530
creating 495

Replication Server

send standby_repdef_cols configuration parameter
520
logical database connections
dropping 523
logical views 81
login names
for subscriptions 367
applied functions 203
applied stored procedures 203
creating for maintenanceuser 172
creating for Replication Server 204
dataserver 20
dependencies 198, 203
displaying maintenanceuser 172
dropping Replication Server 205
for SQL Serveruse 707
ID Server 27,200
list of commands for managing 204
for LTM users 706
Replication Server 20
Replication Server for RSSD LTM use 706
Replication Server for RSSD RepAgent use 200
for Replication Server use 201
request functions 203
request stored procedures 203
RSM.Serversfile 202
RSSD maintenanceuser 199
RSSD primary user 199
for subscriptions 203
loss detection
after setting log recovery 673
checking messages 670
DSl loss 668, 670
handling losses 671
preventing false lossesin stable queue 669
rebuilding stable queues 668
SQM loss 668
with warm standby applications 542
LT™M
adding for RSSD 710
checking for errors 701
configuration file 705
dataflow 697
described 29, 696
error handling 712
error log file 712

Administration Guide

Index

errorsfrom SQL Server 713
login name and password 706
login names to access SQL Server 707
normalization errorsand 714
originqueueID (qid) 675
replicate databases 702
requirements 702
resuming 709
for RSSD 706
shutting down 701
starting 701
suspending 708
transaction timestamp 674
truncation point 698

LTM command 701

LTM truncation point
described 698, 699

M

maintenance user
changing passwords 201
described 201
displaying list of 172
granting database access 172
loginnames 20, 172
required permissions
RSSD 199
for standby database 506
managing replication systems
with Sybase Central 75
mapping security-system login 240
marking data for replication 412
master database
and warm standby applications 483
materialization
database subscriptions 419
MSA 419
materialization methods
for function replication definitions 397
for publication subscriptions 397
materialization queue save interval
setting for logical connections 530
strict setting 530
materialization _save_interva configuration parameter

171,172

755

Index

for logical connections 519
md_source_memory_pool configuration parameter 186
md_sgm_write_request_limit configuration parameter

185, 552, 558
md_sgm_write request_limit parameter 562
mediafailure, ERSSD, recovery 110
memory_limit configuration parameter 552
memory_max configuration parameter 187
menus

shortcut 68

Sybase Central 67

Tools 67

View 67
menus and toolbars 66
Message Delivery module (MD) 547
messages

handling lossin stable queues 671

recovering from off-line databaselogs 640

recovering from online database logs 642

SQM loss detection 673
minimal columns

specifying for replication 257, 265
minimum_rssd_version configuration parameter 100
mixed versions

replication system 18
mnemonics 66
modifiers

in function string variables 462
modules 598

described 544

Message Delivery 547

multi-threaded 598

non-threaded 599

overview 598

single-threaded 599

Transaction Delivery 547
monitoring

database connections 194

errors 426, 702

partition percentages 433

Replication Server 428

routes 165
more columns 270
mount command 357, 499
move primary command 113, 454, 617

routing requirements 143

756

moving ERSSD files 107
msg_confidentiality parameter 226
msg_integrity configuration parameter 226
msg_origin_check configuration parameter 226
msg_replay_detection configuration parameter 226
msg_sequence_check configuration parameter 226
multiple replication definitions
and function strings 444
column-level trandations 329
multiprocessor platforms 592
multiprocessors
enabling 593
monitoring 593
multi-site availability (MSA) 33, 350, 405
advantagesof 406
bulk materialization 408
concurrent replication definitions 416
datareplication 412
database replication definitions 413
dropping database replication definitions 415
featuresof 405
function strings 423
heterogeneous data servers 423
marking data 412
replicating tables and functions separately 408
replicating the database 407
resynchronizing tebles 414
setup 407
warm standby 409
mutual_auth 226

N

name space, replication definition 258
naming replicated tables 306
network-based security 214-242, 705
activiating 222

atering 238

configuring services 223
credential 214

disabling 238

environment variablesfor 220
global settings 228
how it works 215

loggingin 235

Replication Server

mapping login 240

message protection 215

parameters 226

pathways 224

planning for 227

potential security breech 241

requirements 216

requirements and restrictions 216

restrictions 216

settingup 217

using multiple security mechanisms 241

viewing information about 240
Next control 69
no materialization method

described 351

describing 355

requirementsfor using 355
nonatomic materialization

autocorrection 367

described 351, 353

text and image columns 385

in warm standby applications 539
none

transaction serialization method 574
none function string output templates 476
normalization errors

LTMand 714
num_threads configuration parameter 188

O

objecticons 62
object properties 71, 73
object property sheets 71
object tree 61, 63
moving through 62
objectid.dat file 218, 219
objects
articles 82
creating in Sybase Central 70
database replication definitions 82
database subscriptions 83
deleting 74
heterogeneous data servers 82
publication subscriptions 83

Administration Guide

publications 82
selecting 62
stored procedure subscriptions 83
stored procedures 83
Sybase Replication Agents 82
tablereplication definitions 82
table subscriptions 83
tables 82
online database command 504
onlinehelp 57, 57-59
Open Client Client-Library 91
Open Server gateway
creating for Replication Server 16
OQID commit stack 582
originqueue ID (gid) 674
determining database generation numbers
oserver configuration parameter 100
outbound queue, defined 45
output templates
creating empty function strings 470
language 459
none 476
restoring default function strings 469
rpc 459
writetext 476

P

paralel DS
benefitsand risks 566
componentsfor 570
conflicting updates 590
deadlocks 586
described 566, 591
function strings for
grouping logic 580
infrequent conflicting updates 590
optimal performance 587
OQID commit stack 582
parametersfor 567
partitioning rules 576, 589
reducing contentions 588
resolving conflicts 581
serialization methods 572
setting parametersfor 569

585, 586

Index

675

757

Index

transactionsize 590

paralel_ds configuration parameter 558, 569

parameters
disk_affinity 563
dsi_cmd_batch_size 561
exec_cmds_per_timesiice 562
exec_sgm_write_reguest_limit 562
RepAgent configuration 97, 123
stats daemon_dleep_time 603
stats flush rssd 602
stats reset_afterflush 602
stats sampling 601
parameters, stored procedure
adding to replicated functions 345
adding to user-defined functions 690
parent function-string class 450
partition affinity
alocation hint 595
alter connection command 595
alter route command 595
default allocation 594
rs_diskaffinity systemtable 595
partition failure
recovering 637, 642
partitioning rules 576, 589
none 577
origin begin and commit times 578
transaction name 579
user name 577
partitions 593
guidelinesfor choosing 47
monitoring percentages 433

recovering from loss or failure 637, 642

space requirements 635
password encryption
replication system 21

password_encryption configuration parameter 206
password_encryption LTM configuration parameter 707

passwords
alter user command 205
applied functions 203
applied stored procedures 203
changing 205
changing for maintenance user 201

changing for Replication Server in RSSD LTM

706

changing for Replication Server in RSSD RepAgent

758

200
changing for RSSD primary user 199
dependencies 201, 203
enabling encryption 206, 707
encrypted 207
forLTM use 706
for SQL Serveruse 707
ID Server 200, 201
for LTM use 706
for RepAgentuse 200
for Replication Server use 201
request functions 203
request stored procedures 203
requirements for Replication Server 204
RSM.Serversfile 202
subscriptions 203
Paste control 69
performance
replicating local data 3
routing 147
permissions
creating subscriptions 366
displaying for users 214
dropping subscriptions 379
granting 211
granting database access for maintenance user 172
maintenance user 172
managing for Replication Server 207, 214
revoking 212
subscription requirements 367
summary of commandsfor 209
systemfor 21
physical views 81, 83
prev_min_rssd_version configuration parameter 100
prev_rssd_version configuration parameter 100
primary data 48
fallureto update 48
primary data server
subscription requirements 367
primary databases
loading from dumps 647
LTM configuration file 705
recovering from failure 646
recovering truncated logs 642, 645
required permissions 173
subscription requirements 367

Replication Server

upgrading from replicateonly 710
primary dumps

recovering primary databases 646
primary key

adding or dropping 302

defined 32, 257

requirement for unique 250

for tablesin awarm standby database 535
primary key clause 263
primary key columns

restrictionson updating 250
primary Replication Server

changing for an error class 617

changing function-string class to another

Replication Server 454

processingin 544, 549
primary subscribe permission 207
primary tables

subscription requirements 366

upgrading Replication Server to manage 710

primary user

RSSD 199

principal user 222

priority configuration parameter 123
procedure

enabling sampling and flushing 601
Properties

button 73

control 69

properties

object 71,73

property sheets 71

Table Properties 72

tabson 72
publication subscriptions 393, 402
activating 398

asobjectsin Sybase Central 83
bulk materialization method 398
creating 396

defining 398

definition 309

dropping 400

monitoring 401

refreshing 397, 399
restrictions 393

specifying materiaization methods 397

Administration Guide

statusinformation 401
validating 399

publications 319

adding articles 317

dtering 316

asobjectsin Sybase Central 82
creating at thecommand line 312
definition 309

displaying information about 315
dropping 317

dropping replication defintions 318
for stored procedures 347

from Sybase Central 310

isgl script 310

procedure for creating 308
procedure for Sybase Central 310
RCL commandsfor 311
viewing information about 315
published datatype 326

Q

queries

for exceptionslog system tables 624

queuelD 674
quiesce database ... to manifest_filecommand 499
quiescing

procedure for Replication Server 111
replication system 111

R

RCL commands 689

abort switch command 511, 512

activate subscription command 369
adminlog_name command 613

admin logical_statuscommand 511, 515
admin set_log_name 613

admin set_log_namecommand 426
admin who, sgm command 633

dlow connectionscommand 672

dter connection command 172, 178, 455
dter function command 690

Index

alter function replication definition command 335

759

Index

alter function string command 347, 466

alter replication definition command 256, 300
assign action command 618

check subscription command 369, 378
configure connection command 471, 522, 637
create connection command 174, 455

create error classcommand 615

create function replication definition command 335,

339, 342
create function string classcommand 453
create function string command 465
create logical connection command 496
create replication definition command 255, 258
create route command 149
create subscription command 369, 373, 374
create user command 706
define subscription command 369, 375
drop connection command 193, 513
drop error classcommand 616

drop function replication definition command 335,

346
drop function string classcommand 456
drop function string command 467
drop replication definition command 256
drop route command 163
drop subscription command 369, 379
drop user command 205
executing command 91
formatting xxvii
grant command 212
ignorelosscommand 671, 674
move primary command 454, 617
rebuild queues command 665
resume connection 505
resume connection command 188, 505, 621
resume log transfer command 709
resume route command 155
revoke command 212
Set autocorrection command 367
set log recovery command 672
shutdown command 96
suspend connection command 178, 621
suspend log transfer command 132, 708
suspend route 154
sysadmin dropdb command 193
sysadmin dropldb command 524

760

sysadmin purge_route_at_replicate command 164
sysadmin restore_dsi_saved_segments command

635
table of permissions 209, 211
validate subscription command 369
wait for create standby command 505
wait for switch command 511
rebuild queues command 665

rec_daemon_sleep_time configuration parameter 552,

560
recovery
from primary database failures 646

of messages from off-line database logs 640

overview 650

partition loss or failure 637, 642
from RSSD failure 650, 664
of RSSD from dumps 651
setting save intervals 633
support tasks 664, 676

from truncated primary databaselogs 642, 645

using procedures 628
recovery daemon (dREC) 549
recovery instructions, ERSSD 109
recovery mode

Replication Server 648, 666, 672
recovery procedures, ERSSD 109
recovery, from mediafailure, ERSSD 110
redistributed corporate rollup application model
refreshing windows and dialog boxes 70
rep_as_standby configuration parameter 186
RepAgent 119

configuration parameters 122, 123

described 29

disabling 127

enabling for databases 121

enabling on Adaptive Sever 121

error log messages 613

error messages 127

extended limits 129

network security for 128

network-based security for 234

parameters 97

for RSSD 200

secondary truncation point 49

settingup 120

starting 125

14

Replication Server

startingup 125

statusinformation 129

stopping 126

suspending 132

thread status 131

thread user status 131

truncation point 49

upgrading fromLTM 120
RepAgent Executor 185, 557
RepAgent user thread 545
replicate databases

preventing dataloss 633

upgrading to primary databases
replicate minimal columns

and non-default function strings 475

and rs_default_fssystem variable 475
replicate Replication Server

processingin 549

subscription requirements 367
replicate tables

requirements for subscriptions 366
replicated consolidated replicate application model

14

replicated functions

adding parameters 345

adding searchable parameters 345

described 34, 336

dropping 345

modifying 345

subscribingto 340
replicated stored procedures

enabling for replication 344, 688

login and password dependencies 203

replicated function delivery 336
replicated tables

changing 305

changing searchable columns 307

commands for modification 255

dropping 306

enabling for replication 276

failed updates 48

procedures for changing 306

renaming primary and replicate copies 306

requirements 32

subscribingto 350
replication

189, 710

Administration Guide

Index

configuring in standby databases 522
Replication Agent

described 28

open architecture 16

requirements 31

replication definitions

for distributed primary fragments 12
changing 294

commandsfor managing 255
creating 256

datatypes 260

defined 33

described 257

dropping 305

dropping from articles 318
dropping from publications 318
examples 258

extended limits 269

functions 336

name space 258

for distributed primary fragments 9
primary key 263

required for warm standby 531
requirements for creating subscriptions 366
rs addressdatatype 387
searchable columns 264

sending columns to standby database 536
text and image columns 267

text or image columns 284

using 256, 305

using for tables with more than 1024 columns
replication environment 55
connectingto 76-78

defining 78

disconnecting from 78
Replication Manager 53, 54, 55

tasks 76
Replication Server

adding to an existing system 96, 703
advantagesof 3

checking for errors 426, 701
configuration file 96, 229
configuring rs_config systemtable 99
connections 37

described 27

distributed datamodels 9

536

761

Index

dropping from existing system 112, 117 repserver 95
errorlog 514, 610 rs init 96, 703
executable program 95 rs subcmp 391, 671
general description 1 Replication Server System Database (RSSD)
handling lost messages 671 described 30
and heterogeneous data servers 16 loginnames 199
ID numbers 98 LTM for 702
informational messages 611 maintaining 99
internals 543, 550 managing 103
introduction 1 recovering from failure 650
list of databases managed by 194 RepAgent for 200
log recovery mode 672 requirements 31
login name for Adaptive Server use 201 rs_helpdb stored procedure 194
loginnamefor LTM use 706 rs maintusers 213
login namefor RSSD use 201 rs users 213
managing 87, 112 systemtables 30
managing login names 203 updating database generation numbers 676
monitoring 428 users 199
partitions 432, 433 replication system
permissions 207, 212 components 25, 32
plug-in to Sybase Central 53 creating multiple domains 98
primary copy model 6 domains 97
processing inprimary 544, 549 error log files 610
processing inreplicate 549 open architecture 16
quiescing 111 preventing dataloss 633
rebuilding stable queues 665 quiescing 111
recovery mode 648, 666, 672 roles and responsibilities 22
rolein adistributed database system 4 security 197
runfilefor 94 settingup 87
security 214 Replication System Administrator
shutting down 96 roleof xx, 22
standalone mode 640, 665 repserver command 95
standard errors 426, 702 request functions
starting 94 defined 35
subscription requirements 367 described 337
system dataflow 7, 696 login names and passwords 203
technical overview 25, 47 permissions needed at primary 173
transaction handling 43 prerequisites for implementing 332
upgrading to manage primary tables 710 settingup 341
verifying aworking system 426 request stored procedures 680
verifying status 429 login names and passwords 203
Replication Server plug-in 54 prerequisites for implementing 681
help 57-59 primary copy model 6
tasks 76 settingup 686
Replication Server programs requirements
Itm 701 Replication Server 25, 702

762 Replication Server

restoring

dumps 636

primary and replicate databases 646

RSSD 651

restrictions

onreplicated data 249

warm standby applications 483

resume connection command 188, 231, 362, 505,
621

resume log transfer command 132, 709

resume route command 155

resuming

log transfer 133

RepAgent 133

routes 154

resynchronizing replicate tables 414

retry timeout configuration parameter 124

revoke command 207, 212

RMPtasks 76

roll-up

consolidated replicate application model 12

consolidated replicate as primary application model
14

route version

between Replication Servers 164

routes

changing 155, 161

creating 148

creating login names 150

defined 40

determining 142

direct 144

dropping 163

indirect 145

managing 141, 162

monitoring creation of 165

network-based security for 231

purging 116

requirements 142

resuming 154

RSSD recovery 664

setting saveinterval 634

subscriptions 147

suspending 154

unsupported 148

upgrading 164

Administration Guide

Index

routing

examples 152

overlapping subscriptions 147

schemes 144
row migration

text and image columns 386
RPC function string output templates 459
rs name configuration parameter 123
rs password configuration parameter 123
RSuser thread 549
rsusername configuration parameter 123
rs_addressdatatype 292
rs_begin system function 440
rs_check_repl system function 440
rs_commit system function 440
rs_config systemtable 101

configuration parameters 551
rs_databases systemtable 194

rs datarow_for_writetext system function 442
rs_default_function_class 484

described 446
rs_delete system function 442
rs_delexception stored procedure 624
rs_diskaffinity systemtable 595
rs_dumpdb system function 440, 637
rs_dumptran system function 440, 637
rs_exceptscmd system table 622
rs_exceptshdr system table 622
rs_get_charset system function 441
rs_get_lastcommit system function 441
rs_get_sortorder system function 441
rs_get_textptr system function 442
rs get_thread_seq system function 441, 586

rs_get_thread_seq_noholdlock system function
586
rs_helpclass stored procedure 473
rs_helpdb stored procedure 113, 194
rs_helperror stored procedure 619
rs_helpexception stored procedure 622
rs_helpfstring stored procedure 473
rs_helpfunc stored procedure 473
rs_helppub stored procedure 312, 316, 402
rs_helprepdb stored procedure 390
rs_helproute stored procedure 166
rs_helpuser stored procedure 213
rs_idnames system table

441,

763

Index

dropping database from 193
dropping logical databasefrom 524
rs_init
createsERSSD 97
rs_init program 100
adding astandby database 504
adding Replication Serversto existing system 703
adding warm standby databases 496
enabling password encryption 707
preparing databases for replication 703
rs_init_erroractions stored procedure 616
rs_initialize threads system function 441, 586
rs_insert system function 442
rs_lastcommit system table 188
permissions 172
rs_maintusers systemtable 213
rs_marker stored procedure 173
rs_marker system function 441
rs_mk_rsids_consistent stored procedure 656
rs_raw_object_serialization function 441
rs_repl_off system function 441
rs_rollback system function 441
rs_select system function 442
updating function strings 466
rs_select_with lock system function 442
updating function strings 466
rs set_isolation_level3 system function 441, 575
rs_set_proxy function 441
rs_setproxy function string 238
rs sqlserver_error_classerror class 615
rs sqlserver_function_class 454, 470
described 445
rs_statcounters systemtable 598, 605
rs_statdetail systemtable 598
rs_statrun system table 598
rs_subcmp program 391, 541, 671
rs_subscriptions system table 398
rs_systext systemtable 622
rs_textptr_init system function 442
rs_thread check_lock system function 441
rs_triggers reset system function 441
rs_trunc_reset system function 441
rs_trunc_set system function 441
rs_truncate function 442
rs_update system function 442
rs_update_lastcommit stored procedure 173

764

rs_update_threads system function 441, 586
rs_usedb system function 441

rs userssystemtable 213

rs_writetext system function 442

RS threads
described 46, 548
displaying 166

RS user thread 550
rsi_batch_size configuration parameter 151, 558
rsi_fadeout_time configuration parameter 151
rsi_packet_size configuration parameter 151, 558
rsi_sync_interval configuration parameter 151, 558
rsi_xact_with_large_msg configuration parameter 151
RSM

login name and password dependencies 202

monitoring errors 426

tasks 76

verifying server status 429
RSM Server 55

connectingto 76-78

disconnecting from 78
RSM Server domain 55, 63

defining 78
RSSD

network-based security for 229
RSSD failure

recovering 650, 664
rssd_error_class configuration parameter 100
runfile, Replication Server 94

S

sapermission xx, 207, 209
sampling
of non-intrusive counters 601
save interval
described 633
setting for connections 636
setting for logical connections 530
setting for routes 634
strict setting 530, 539
save_interval configuration parameter 633
for database connection 186
for logical connection 520
forroute 151

Replication Server

scan batch size configuration parameter 124
scan timeout configuration parameter 124
scan_retry LTM configuration parameter 699
schema cache growth factor configuration parameter
124
scope, of functions 439
scripts
executinginisgl 93
replication definition examples 381
verifying server status 429
search
help 59
searchable columns
adding searchable columns 304
dropping from the searchable columnslist 301,
308
searchable columnsclause 257
searchable parameters
adding to replicated functions 345
secondary truncation point
and disabling RepAgent 127
described 49, 50
secure sockets layer 242

security
network-based 214
RepAgent 128

Replication Server 197, 214
replication system 20
security mechanisms
CyberSafe Kerberos 216
DCE 218
Transarc DCE 216
security services, configuring 223
security, network-based 204-242
security_mechanism 226
select command 358
select with holdlock clause 397
send buffer_size configuration parameter 124
send maint xacts to replicate configuration parameter
124
send standby clause
for columns 536
for parameters 536
send standby_repdef_cols configuration parameter for
logical connections 520
send structured opids configuration parameter 124

Administration Guide

Index

send warm standby xacts configuration parameter 124
send_enc_password configuration parameter 202, 552
send_standby configuration parameter 416
serialization methods
isolation_level_3 574
no_wait 573
none 573
single_transaction_per_origin 575
wait_for_commit 574
wait_for_start 573
server user’'s 1D
for warm standby databases 503
servers
adding 79
verifying operation 429
set autocorrection command 367
set function string class clause 455
set log recovery command 672
set proxy command 221, 238
set replication Transact-SQL command 493, 522
set triggers off Transact-SQL command 522
setting up network-based security 217
severity levels
data server errors 619
error messages 611
LTM 712
Replication Server 619
short Itl keywords configuration parameter 125
shortcut menus 68
shortcuts
to create anew object 71
to delete an object 75
to view an object’s properties 72
shutdown RCL command 96
shutting down
LTM 701
Replication Server 96
single_transaction_per_origin
transaction serialization method 575
skip Itl errors configuration parameter 125
skip transaction clause 188, 622
skip unsupported features configuration parameter
125
Small Icon control 69
small transactions 570
smp_enable configuration parameter 553

765

Index

sp_config_rep_agent system procedure 234
sp_helpcounter command system procedure 605
sp_reptostandby system procedure 487, 505
sp_role system procedure 171
sp_setreplicate system procedure
marking rs_marker for replication 191
marking stored procedures for replication 688
Sp_setrepproc system procedure 338, 491
marking stored procedures for replication 344
marking stored proceduresin awarm standby active
database 505
using for applied function 338
using for request function 342
sp_setreptable system procedure

marking tables in awarm standby active database 505

p_stop_rep_agent command 114, 126
SQL Server
login namesfor LTM access 707
truncation point 698
sgl.ini files 79
sgm_recover_segs configuration parameter 553
sgm_write flush configuration parameter 553, 554
SQT cache 590
sgt_init_read_delay configuration parameter 553
sgt_max_cache _size configuration parameter 553, 569
sgt_max_read_delay configuration parameter 553
SSL 242
certificate authority 242
enabling on Replication Server 245
on Replication Server 243
requirementsfor 244
settingup 244
trusted rootsfile 243
SSL handshake 243
SSL security 242
Stable Queue Manager thread (SQM) 546
detecting loss during stable queue rebuild 668
handling losses 671
loss detection after log recovery 673
Stable Queue Transaction thread (SQT) 546
stable queues 555
atomic materialization 353
described 44
detecting losses 668
disk files 47
DSl loss 668

766

handling partition failure 635
off-line rebuild from databaselogs 666
onlinerebuild 665
rebuilding 665
requirements 46
for routes 148
standalone mode
Replication Server 640, 665
standby database 480
adding 498
monitoring status of add 514
switchingto 506
star configuration

described 144
starting
LTM 700

Replication Server 94
Sybase Central 60
stats_ daemon_sleep_time configuration parameter
553, 603
stats flush_rssd command parameter 602
stats reset_afterflush command parameter 602
stats sampling command parameter 602
status
verifying dataservers 429
verifying RepAgents 429
verifying Replication Servers 429
statusbar 68-70
status information
topology 86
stopping Sybase Central 60
stored procedure subscriptions
asobjectsin Sybase Central 83
stored procedures
asobjectsin Sybase Central 83
dropping 691
marking for replication using sp_setreplicate 688
marking for replication using sp_setrepproc 343
publications 347
rs_delexception 624
rs helpclass 473
rs helpdb 194
rs_helperror 619
rs_helpexception 622
rs_helpfstring 473
rs helprep 299

Replication Server

rs helprepdb 390

rs helproute 166

rs helpsub 390

rs helpuser 213

rs init_erroractions 616

rs mk_rsids consistent 656

rs_update lastcommit 173
sts cachesize configuration parameter 554
sts full_cache configuration parameter 554
sub_daemon_sleep_time configuration parameter

554

sub_sgm_write_request_limit configuration parameter
186, 554

subscribe to truncate table clause 395

subscribing

to datain warm standby databases 537
to function replication definitions 344
to replicated tables 350
subscriptions
primary fragments 12
subscription dematerialization
methods 379
phases 365
processing 363
with purge 363
subscription materiaization 186

defined 33
methods 366
phases 364

text and image columns 384
subscription materialization queue
defined 45
subscription migration
described 547
rs_addresscolumns 389
subscription resolution engine (SRE) 415, 547
subscription retry daemon (dSUB) 549
subscriptions
adding to a publication subscriptions 397
bitmap 387
commands for managing 368
comparing after restoring backups 654
defined 350
displaying 390
dropping 203, 378, 421
login names and password dependencies 203

Administration Guide

Index

overlapping 147
permissions for creating 208
preparationsfor creating 366
primary fragments 9
re-creating after backups 660
removing rows manualy 380
requirements 366
restrictions in warm standby applications 537
user permission requirements 208
verifying consistency 390
Sun Cluster HA 717, 719
references 717
suspect subscriptions 539
suspend connection command 178, 231, 621
suspend log transfer command 132, 708
suspend routecommand 154
suspending
database connections 177
log transfer 131
LTMs 131
routes 154
switch active command
during atomic materiaization 539
during subscription dematerialization 540
during subscription materialization 538
Sybase Central 91
creating an objectin 70
for Windows 54
Javaedition 54
managing replication systemswith 75
menus 67
navigatingin 61
onlinehep 57
Replication Server views 81
shortcut menus 68
stopping 60
toolbar 68
using publications 310
Sybase Central window
customizing 64
Sybase Replication Agents
asobjectsin Sybase Central 82
syntax statements
conventions Xxv
sysadmin dropdb command 115, 116, 193
sysadmin dropldb command 524

767

Index

sysadmin droprscommand 114
sysadmin erssd, command 106, 107

sysadmin purge_route_at_replicate command 164
sysadmin restore dsi_saved segmentscommand 635

system functions
rs dumpdb 637
rs_dumptran 637
system functions, list of

with function-string class scope 440
with replication definition scope 442

system procedures
replicating 422
sp_helpcounter command 605
sp_reptostandby 407
sp_setreplicate 284, 688
Sp_setrepproc 344, 505
p_setreptable 276, 505
system tables

described 30
rs_config 100
rs_databases 194

rs diskaffinity 595
rs_exceptscmd 622
rs_exceptshdr 622
rs_idnames 193, 523
rs lastcommit 188
rs_statcounters 598, 605
rs_statdetail 598
rs_statrun 598
rs_systext 622

system transactions 626

T

Table Propertiesdialog box 72
table replication definitions
asobjectsin Sybase Central 82
table subscriptions
asobjectsin Sybase Central 83
tables
asobjectsin Sybase Central 82
creating for replication 248
procedure for replicating 251
subscription requirements 367
tabs

768

help contents 58
help search 59
index contents 59
ondialog boxes 72
on property sheets 72
testing
Replication Server components 427
Replication Server connections 427
text datatype
changing replication for 288
LTM shutdownand 289
overview of replication 283
threads
described 544
displaying for replication system 430
distributor (dist) 546
DSl executor 548, 570
DSl scheduler 45, 548, 570
in primary Replication Server described 549
in primary replication server described 544
for parallel DSI 566
RSuser 549
RS 46,548
RSl user 550
Stable Queue Manager (SQM) 545
Stable Queue Transaction (SQT) 546
USER 549
threads, miscellaneous 549
threshold levels
setting and using for partitions 432
timestamp
and foreign LTMs 674
qd 674
toolbar 68-70
buttons 68
hiding 68
Sybase Central 68
toolbar button help 59
toolbar controls
Back 69
Connect 69
Copy 69
Cut 69
Delete 69
Details 69
Disconnect 69

Replication Server

Index

Drop-down hierarchy 69 U
Largelcon 69 . .
ag unified_login 227
List 69
Up control 69
Next 69 . X .
updating function strings 466
Paste 69)
. upgrading routes 164
Properties 69
user stored procedures
Small Icon 69 reolicating 423
Up 69 epiicaling

USER thread 549
user-defined functions
adding parameters 690

Toolsmenu 67
tooltips 59, 69

topichelp - 57 associating replicated stored procedureswith 689
topology described 438

edges 85 .

folders 85 dmrgr?%?gg 66?;8

statusinformation 86 : .

views 81, 84 mapping to adifferent stored procedure name 691

specifying a non-unique function name 693
users, displaying replication system 213
users, ERSSD 108

Transaction Delivery module (TD) 547
transaction names, default 579
transaction size 590

transactions
exceptionshandling 620
handling suspended 177 V
handling with Replication Server 43 . _
large 571 validate publication command 311, 313, 315

validate subscription command 369, 395, 399

loading log dumps 674)
48 variables

modifying datain multiple data servers

processing with parallel DSI threads 566, 591 functionstrings 42, 462
reasons for failure 620 modifiers 462
seridlization methods 572 system-defined 462

skip transaction clause 188 verify password clause 205
smal 571 verifying translations 330

timestamp 674 version daemon (dVERSION) 549
Transact-SQL commands version number for route 164

dump database 637 vgrsi ons, replication system 18
dump transaction 637 View menu 67 _
set replication off 522 viewing object properties 71
set triggers off 522 views

triggers |09qu 81
configuring in standby databases 522 physical 81

truncate table command 626 topology 81, 84

enabling replication of 398

RCL 486

Transact-SQL 395 Wi
truncated database logs, recovering 642, 645]
truncation of Adaptive Server databaselogs 49 wait for create standby command 505
trusted rootsfile 243 wait for switch command 511

warm standby applications

Administration Guide 769

Index

comparing methods 485
database connections 481
databases 481
effects of switching to the standby database 509
forcing replication of DDL commands 493
logical connections 481
monitoring 514
MSA advantages 406
physical connections 481
for aprimary database 524
for areplicate database 526
restrictions 483
setting up databases 494, 521
switching to the standby database 506
switchover with MSA 412
tableswith the samename 491
turning off replication 493
using MSA 409
warm standby, alter table command support 532
where clause
atering 317
for create subscription command 370
limit to expressions 1024 columns 536
operators 314
syntax 314
used in articles 314
wide columns 270
widedata 270
wide messages 271
with nowait clause 178
with primary table named clause 259
with purge clause 401
with replicate table named clause 259
without holdlock clause 374
without purge clause 400
wizards 71
write operations 554
writetext function string output templates 476
writing directly to media 554

770 Replication Server

	Administration Guide: Volume 2
	CHAPTER 13 Verifying and Monitoring Replication Server
	Checking replication system log files for errors
	Verifying a replication system
	Monitoring Replication Server
	Verifying server status
	Displaying replication system thread status
	Using system information commands

	Setting and using threshold levels
	Monitoring partition percentages

	CHAPTER 14 Customizing Database Operations
	Overview
	Working with functions, function strings, and classes
	Functions
	System functions
	User-defined functions
	Function scope

	Summary of system functions
	System functions with function-string-class scope
	System functions with replication-definition scope

	Function strings
	Input and output templates
	Applications for customized function strings

	System functions with multiple function strings

	Function-string classes
	System-provided classes
	Function-string inheritance
	Restrictions in mixed-version systems

	Managing function-string classes
	Creating a function-string class
	Creating a derived class
	Creating a base class
	Primary site for a function-string class

	Assigning a function-string class to a database
	Dropping a function-string class

	Managing function strings
	Function strings and function-string classes
	Function-string input and output templates
	Requirements for using input and output templates

	Using output templates
	Language output templates
	RPC output templates
	Output templates for rs_writetext function strings

	Using input templates
	Class in which to create function strings

	Using function-string variables
	Function-string variable formatting

	Creating function strings
	Guidelines for creating function strings

	Altering function strings
	Dropping function strings
	Restoring default function strings
	Creating empty function strings with the output template
	Remapping table and column names with function strings
	Defining multiple commands in a function string
	Using declare statements in language output templates

	Displaying function-related information
	Obtaining information using the admin command
	Obtaining information using stored procedures

	Using the default system variable
	Extending default function strings
	Using replicate minimal columns

	Using function strings with text, image, and rawobject datatypes
	Using output writetext for rs_writetext function strings
	Using output none for rs_writetext function strings
	Heterogeneous replication and text, image, and rawobject data

	CHAPTER 15 Managing Warm Standby Applications
	Overview
	How a warm standby works
	Database connections in a warm standby application
	Primary and replicate databases and warm standby applications
	Comparison of database relationships

	Warm standby requirements and restrictions
	Function strings for maintaining standby databases

	What information is replicated?
	Comparing replication methods
	Using sp_reptostandby to enable replication
	Restrictions and requirements when using sp_reptostandby
	Disabling replication

	Using sp_setreptable to enable replication
	Using sp_setrepproc to copy user stored procedures
	Replicating tables with the same name but different owners
	Replicating text, image, and rawobject data
	When warm standby involves a replicate database

	Changing replication for the current isql session
	Forcing replication of DDL commands to the standby database
	Turning off all replication to the standby database

	Setting up warm standby databases
	Before you begin
	Client application issues

	Task one: Creating the logical connection
	Naming the logical connection
	Procedure for creating the logical connection
	Reconfiguring and restarting RepAgent

	Task two: Adding the active database
	Task three: Enabling replication for objects in the active database
	Enabling replication for objects added later

	Task four: Adding the standby database
	Creating the standby database
	Determining how to initialize the standby database
	Adding the standby database maintenance user
	Adding the standby database to the replication system
	Enabling replication for objects in the standby database
	Granting permissions to the maintenance user

	Switching the active and standby databases
	Determining if a switch is necessary
	Before switching active and standby databases
	Internal switching steps
	After switching active and standby databases
	Making the switch
	Disconnect client applications from the active database
	Procedure for switching the active and standby databases
	Restart client applications
	Manage the old active database

	Monitoring a warm standby application
	Replication Server log file
	Standby connection created
	Standby connection resumed after initialization

	Commands for monitoring warm standby applications
	admin logical_status
	admin who, dsi
	admin who, sqm
	admin sqm_readers

	Setting up clients to work with the active data server
	Two interfaces files
	Symbolic data server name for client applications
	Map client data server to currently active data server

	Altering warm standby database connections
	Altering logical connections
	Changing parameters affecting logical connections
	Disabling the Distributor thread
	Replicating truncate table to standby databases

	Altering physical connections
	Configuring triggers in the standby database
	Configuring replication in the standby database
	Changing configuration parameters in the standby database

	Dropping logical database connections
	Dropping a logical database from the ID Server

	Warm standby applications using replication
	Warm standby application for a primary database
	Warm standby application for a replicate database
	Configuring logical connection save intervals

	Using replication definitions and subscriptions
	Creating replication definitions for warm standby databases
	alter table support for warm standby
	Using replication definitions to optimize performance
	Using replication definitions for tables with more than 1024 columns
	Using replication definitions to copy redundant updates

	Using subscriptions with warm standby application
	Restrictions on using subscriptions
	Subscription materialization for logical primary database
	Subscription materialization for logical replicate database
	Checking subscriptions
	Dropping subscriptions

	Missing columns when you create the standby database

	Loss detection and recovery

	CHAPTER 16 Performance Tuning
	Replication Server internal processing
	Threads, modules, and daemons
	Processing in the primary Replication Server
	Replication agent user thread
	Stable Queue Manager thread
	Stable Queue Transaction thread
	Distributor thread and related modules
	Data Server Interface threads
	Replication Server Interface thread
	Miscellaneous daemon threads

	Processing in the replicate Replication Server
	RSI user thread

	Configuration parameters that affect performance
	Replication Server parameters that affect performance
	Stable devices: considerations

	Connection parameters that affect performance
	Route parameters that affect performance

	Suggestions for using tuning parameters
	Setting the amount of time SQM Writer waits
	Caching system tables
	Setting wake up intervals
	Sizing the SQT cache
	Controlling the number of network operations
	Controlling the number of outstanding bytes
	Controlling the number of commands the RepAgent executor can process
	Specifying the number of stable queue segments allocated
	Selecting disk partitions for stable queues
	Making SMP more effective
	Specifying the number of transactions in a group
	Database configuration parameter : dsi_max_xacts_in_group
	Database configuration parameters: dsi_xact_group_size and dsi_max_xacts_in_group

	Using parallel DSI threads
	Benefits and risks
	Parallel DSI parameters
	Components of parallel DSI
	DSI scheduler thread
	DSI executor threads

	Processing transactions with parallel DSI threads
	Small transactions
	Large transactions

	Transaction serialization methods
	no_wait
	wait_for_start
	wait_for_commit
	isolation_level_3
	single_transaction_per_origin

	Partitioning rules: reducing contention and increasing parallelism
	Using transaction-partitioning rules
	Using multiple transaction rules
	Grouping logic and transaction partitioning rules

	Resolving conflicting updates
	Resolving conflicts internally using the rs_dsi_check_thread_lock function string
	Using rs_threads to resolve conflicts externally

	Configuring parallel DSI for optimal performance
	Before you begin
	Reducing contention
	Using partitioning rules
	Frequent conflicting updates
	Infrequent conflicting updates
	Transaction size and SQT cache
	Number of statements and SQT cache

	Parallel DSI and the rs_origin_commit_time system variable

	Using multiprocessor platforms
	Enabling multiprocessor support
	Monitoring thread status
	Monitoring performance

	Allocating queue segments
	Choosing disk allocations
	An example

	Dropping hints and partitions

	CHAPTER 17 Using Counters to Monitor Performance
	Introduction
	Modules and counters: an overview
	Modules
	Counters
	Names
	Types
	Status options

	Enabling sampling and flushing
	Enabling sampling of non-intrusive counters
	Enabling sampling of intrusive counters
	Enabling flushing
	Enabling reset after flushing
	Setting seconds between flushes

	Configuring modules, connections, and routes
	Flushing for all modules
	Flushing for multithreaded modules

	Viewing information about the counters
	Viewing current counter values
	Viewing values flushed to the RSSD
	Resetting counters
	dSTATS daemon thread

	CHAPTER 18 Handling Errors and Exceptions
	General error handling
	Error log files
	Replication Server error log
	Informational messages
	Error and warning messages
	Finding the name of the Replication Server error log
	Changing to a new Replication Server log file

	RepAgent error log messages
	Sample error messages

	Data server error handling
	Creating an error class
	Initializing a new error class
	Dropping an error class
	Changing the primary Replication Server for an error class
	Displaying error class information
	Assigning actions to data server errors
	Displaying assigned actions for error numbers

	Exceptions handling
	Handling failed transactions
	Suspend database connection
	Analyze and resolve the problem
	Resume the connection

	Accessing the exceptions log
	Displaying transactions in the exceptions log
	Querying the exceptions log system tables

	Deleting transactions from the exceptions log

	DSI duplicate detection
	Duplicate detection for system transactions

	CHAPTER 19 Replication System Recovery
	How to use recovery procedures
	Configuring the replication system to support Sybase Failover
	Overview
	Enabling Failover support in Replication Server
	How Sybase Failover works with Replication Server
	Requirements
	Enabling Failover support for an RSSD connection
	Enabling Failover support for non-RSSD database connections

	Configuring the replication system to prevent data loss
	Save interval for recovery
	Routes between Replication Servers
	Connections between Replication Servers and data servers

	Backing up the RSSDs
	Creating coordinated dumps

	Recovering from partition loss or failure
	Procedure for recovering from partition loss or failure
	Message recovery from off-line database logs
	Message recovery from the online database log

	Recovering from truncated primary database logs
	Truncated message recovery from the database log

	Recovering from primary database failures
	Loading from coordinated dumps
	Loading a primary database from dumps

	Recovering from RSSD failure
	Recovering an RSSD from dumps
	Basic RSSD recovery procedure
	Subscription comparison procedure
	Using rs_subcmp on replicated RSSD system tables
	Classes and system tables

	Subscription re-creation procedure
	Deintegration/reintegration procedure

	Recovery support tasks
	Rebuilding stable queues
	Rebuilding queues online
	Rebuilding queues from off-line database logs
	Loss detection after rebuilding stable queues
	Setting log recovery for databases
	Loss detection after setting log recovery
	Determining which dumps to load
	Adjusting database generation numbers

	APPENDIX A Asynchronous Procedures
	Overview
	Logging replicated stored procedures
	Logging replicated stored restrictions
	Mixed-mode transactions

	Applied stored procedures
	Request stored procedures
	Asynchronous stored procedure prerequisites
	Steps for implementing an applied stored procedure
	Warning conditions

	Steps for implementing a request stored procedure
	Specifying stored procedures and tables for replication
	Managing user-defined functions
	Creating a user-defined function
	Adding parameters to a user-defined function
	Dropping a user-defined function
	Mapping to a different stored procedure name
	Specifying a nonunique name for a user-defined function

	APPENDIX B LTM for SQL Server
	Overview
	Data flow for replication systems with LTMs
	LTM processing
	LTM processing data flow
	Data server log truncation
	LTM user thread

	SQL Server LTM executable program
	Shutting down an LTM
	Checking log files for errors

	Configuring and maintaining the LTM
	Adding a Replication Server
	Preparing databases for replication
	rs_init installation program

	Interfaces file
	LTM configuration file
	Replication Server login name and password for the LTM
	LTM login name and password
	SQL Server login name and password
	Enabling and disabling password encryption
	Disabling encryption on new and existing LTM passwords

	Suspending and resuming log transfer
	Suspending LTMs
	Resuming LTMs

	Modifying replication systems with LTMs
	Configuring Replication Servers to manage primary tables
	Changing replicate databases to primary databases
	Changing primary databases to replicate databases

	LTM error log information
	LTM message types
	LTM warning messages from SQL Server

	APPENDIX C High Availability on Sun Cluster 2.2
	Introduction
	Terminology
	Technology overview
	Configuring Replication Server for high availability
	Configuring Sun Cluster for HA
	Installing Replication Server for HA
	Installing Replication Server as a data service

	Administering Replication Server as a data service
	Data service start/shutdown
	Logs

	Glossary
	Index

