SYBASE

Java in Adaptive Server Enterprise

Adaptive Server Enterprise

12.5

DOCUMENT ID: 31652-01-1250-03
LAST REVISED: June 2001

Copyright © 1989-2001 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated in new
editions or technical notes. Information in thisdocument is subject to change without notice. The software described herein is furnished
under alicense agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 229-9845.

Customers in other countries with aU.S. license agreement may contact Customer Fulfillment viathe above fax number. All other
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software rel ease dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server,
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication,
Adaptive Server Everywhere, Adaptive Server 1Q, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpress,
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distribution
Director, E-Anywhere, E-Whatever, Embedded SQL, EM S, Enterprise Application Studio, Enterprise Client/Server, Enterprise Connect,
Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work Designer,
Enterprise Work Modeler, EWA, Financial Fusion, Financial Fusion Server, Gateway Manager, |mpactNow, InfoMaker, Information
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MySupport,
Net-Gateway, Net-Library, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client,
Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, PowerAMC, PowerBuilder,
PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScript, PowerSite,
PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, PowerWare Desktop,
PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver, Replication Server,
Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S-Designor, SDF, Secure SQL
Server, Secure SQL Toolset, Security Guardian, SKIL S, smart.partners, smart.parts, smart.script, SQL Advantage, SQL Anywhere, SQL
Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere, SQL Modeler, SQL Remote, SQL
Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQL Server SNMP SubAgent, SQL
Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase Financial Server, Sybase Gateways, Sybase
MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User Workbench, SybaseWare, Syber Financial,
SyberAssist, SyBooks, System 10, System 11, System X1 (logo), SystemTools, Tabular Data Stream, Transact-SQL , Translation Toolkit,
UNIBOM, Unilib, Uninull, Unisep, Unistring, URK RuntimeKit for UniCode, Viewer, Visual Components, Visual Speller, Visual Writer,
VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehouse WORK S, Watcom, Watcom SQL., Watcom SQL
Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, XA-Server and XP
Server are trademarks of Sybase, Inc. 3/01

Unicode and the Unicode L ogo are registered trademarks of Unicode, Inc.
All other company and product names used herein may be trademarks or registered trademarks of their respective companies.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents

F N o Lo U A I TS = X Yo PERRR Xi
CHAPTER 1 An Introduction to Java in the Databasecccccceeeiiiiiiieennnne, 1
Advantages of Java in the databasecccoecvviveeieeiiiciiiinneee, 1
Capabilities of Java in the databaseccccvvvveeiiiiiiiiiiiie e, 2
Invoking Java methods in the database.............cccccovviiiiinennnnn. 2
Storing Java classes as datatypescccvvveviieeiiiniiiiieiieeen s 3
Storing and querying XML in the databasecccccceeeeiiiins 4
SEANCAITSeeeeee e 4
Java in the database: questions and anSWersccccccovvvvvveeneeennn, 5
What are the key features? ..., 5
How can | store Java instructions in the database? 6
How is Java executed in the database?..........ccccccccvvviviinennnnn. 6
How can | use Java and SQL together?..........cccccceevvviiviienneennn. 7
What is the JaVa API?uueiiiie e 8
How can | access the Java API from SQL?ooevvvvvvvvvvivinnnnns 8
Which Java classes are supported in the Java API? 8
Can | install my own Java ClassSes?........cccvvcvveeeiiiniiiieeiee e 9
Can | access data USiNg JAVA?coovivuviiieiieenniiniiiieeeee e 9
Can | use the same classes on client and server?................... 9
How do | use Java classes in SQL?........uvvvevieveveeeeeeieeieeeeeeennnnns 9
Where can | find information about Java in the database? 10
What you cannot do with Java in the database....................... 10
SaMPIe JAVA CIASSESuvviiiiiieiiiiiiiieiiie et 11
CHAPTER 2 Preparing for and Maintaining Java in the Database................. 13
The Java runtime enviroNMEeNt...........coccuvvieeeeeeeciciiieee e 13
Java classes in the databasecccccccvvviiiiii e, 13
JDBC ArVEIS ...uieviiiee ittt eetee e e s e e e e s s e raeneaa e 14
THE JAVA VM ...ttt a e e 14
Configuring memory for Java in the database.............cccccceeveeeiiins 15
Enabling the server for Javacccccceeeeeiiiiiieee e 15
Disabling the server for Java..........ccccvvvviiiiiiiniiiiiiie e, 15

Contents

CHAPTER 3

Creating Java classes and JARSccccovviiiiiiineeiiiiiiiiieee e 16
WIriting the Java COOE.........ooivuviiiiiiiei i 16
Compiling Java COUEoouvviiiiiiee e 16
Saving classes in @ JARfile ...cooooeiiiiiiiiiie e, 16

Installing Java classes in the database............cccccccveeeviiciiiineneenn, 17
USING iNSLAIJAVAvvvvveeiiciiiiieiee e 18
Referencing other Java-SQL classes..........ccccccveeviiicivineeneenn. 20

Viewing information about installed classes and JARs.................. 20

Downloading installed classes and JARS............cccccvvveeieeesiiiivinnnn. 21

Removing classes and JARSooiiiiiiiiiieeeeiiee e 21
RetaiNiNg ClaSSeSoovuiiiiiiii e 21

Using Java Classes iN SQL ...t 23

GENETal CONCEPLS ..ooeeiiiiiiiiiee ettt 24
Java CONSIAEIAtIONS.cuvereiirieee it 24
Java-SQL NAMES........uiiiii i 24

Using Java classes as datatypescocvvvvveeeeiiiiiiiiieeeee e 25
Creating and altering tables with Java-SQL columns.............. 26
Selecting, inserting, updating, and deleting Java objects........ 28

Invoking Java methods in SQLcocciiiiiiiee e 30
Sample MEthOScccoiiiiiiiiiee e 31
Exceptions in Java-SQL methodsccccvvveeieeeiicciiiieeeeen, 31

Representing Java iNStanCesScccovviiuiiiieeeeeeiiiiieee e esnvneeeens 31

Assignment properties of Java-SQL data items............occvvveeeeeenn, 32

Datatype mapping between Java and SQL fieldsc...cccoeeuvvneen. 35

Character sets for data and identifiersccccccvvceieniee e, 36

Subtypes in Java-SQL dataceevveeiiiiiiiiiiiie e 36
Widening CONVEISIONS ...c.ccovviiiviiiieiieeis ittt e e 36
NarroWing CONVEISIONScciieeiiiiiiiiiieieeesiriiiieeeeees s sniieeeeeaeess 37
Runtime versus compile-time datatypescccccccvvvvvvieeenenn. 38

The treatment of nulls in Java-SQL data..........cccccceeeviiiiiiiieeeeennns 38
References to fields and methods of null instances................ 38
Null values as arguments to Java-SQL methods..................... 40
Null values when using the SQL convert function.................... 41

Java-SQL String datacc.uvevveeiiiiiiiiiicce e 42
Zero-1ength StHNGSeeoviiiiiiiiiie e 42

Type and void MEthodS........ccooovviiiiiiiiieeii e 43
Java void instance methods...........ccoceeiiiiie e 43
Java void static Methods...........ccooiviiiiiiiee e 45

Equality and ordering Operationsccccvveieeeeiiiiivieeiee e e 45

Evaluation order and Java method callsccoceevrieiiiiiieenns 46
(0] 1] 0 1o SRR 47
Variables and parameterscccvvveeeeeeeiiiiiiieee e a7

Static variables in Java-SQL classes........ccccccvvvvviiieiieieieiieeee 48

Contents

Java classes in multiple databases.............ccccvvvevieeiiiiciiineeeee e 49
Yo 0] 01 49
Cross-database references........ccccccvivciiieeee i 49
INter-class tranSfers.........ccooi e 50
Passing inter-class argumentscccccceevviveiiieeeee e 51
Temporary and work databases...........ccccveevieeiiiiiiiiiniee s 51

JAVA CIASSES....cciiiiiie ittt 52

CHAPTER 4 Data Access USiNg JDBC ...t 57

OVEIVIEBW ...ttt ettt e e 57

JDBC concepts and terminologyceeeiviiiiieiieeeniniiiiieieeee s 58

Differences between client- and server-side JDBC..............cc........ 58

PEIMISSIONS .. ciiiiiiii it e e sn s 59

Using JDBC t0 aCCeSS datacvvveeeieiiiiiiiiieeeeeeiiiieee e 60
Overview of the IDBCExamples Classcccvvvveveeeesinciinnnnn, 60
The main() and serverMain() methodscccccvvevreeeiiinns 61
Obtaining a JDBC connection: the Connecter() method 62

Routing the action to other methods: the doAction() method. 63
Executing imperative SQL operations: the doSQL() method . 63
Executing an update statement: the UpdateAction() method. 63

Executing a select statement: the selectAction() method....... 64
Calling a SQL stored procedure: the callAction() method 65
Error handling in the native JIDBC driVer........ccccoovvviiieniieiiiniiiieenn, 67
The JDBCEXamPIeSs ClasS.........cccoviiiiriiieee e 69
The main() Methodcccccoo i, 69
The internalMain() methodccceeveeeiiiiiiiee e, 69
The connecter() Methodcccvvvieii e 70
The doAction() method...........cccvvieieii e 71
The doSQL() Method........ccoooiiiiiiiieeeecee e 72
The updateAction() Method.........ccccceevviiiiiiiiiee e 72
The selectAction() methodccceeviiiiiii e 73
The callAction() Methodcceevveeiiiiiiiii e 73
CHAPTER 5 SQLJ Functions and Stored Procedures..........cccceevvvivivineniinnnnn. 75
OVEIVIBW ...ttt ettt e e 75
Compliance with SQLJ Part 1 specifications.........ccccccovvvvnen. 76
GENETAL ISSUES ...ttt 76
Security and PermiSSIONSceeeeiiiiiiiiiiieee i 77
SQLIEXAMPIES.....uiiiiiiee ittt 78
Invoking Java methods in Adaptive Server........ccccccceeviicvvieeeeeennn, 78
Using Sybase Central to manage SQLJ functions and procedures 80
SQLJ user-defined fUNCLIONS...........uvvveieeiiiieee e 81
Handling null argument values...........cccccveeeiiiciiiieniee e 84

Contents

CHAPTER 6

CHAPTER 7

Vi

Deleting a SQLJ function Name.........cccccoevvvviiiiieeneeenniiiieenn. 86
SQLJ Stored ProCEAUIESoiiiiiiiiiieeeieiiiieiee e e siiieee e e e 87
Modifying SQL data.........ceevieeiiiiiiiiiieiee i 89
Using input and output parameterscccccoeeevvveveeeeeeeesiinnne 90
Returning result SEtSccccevvivciiiiieie e 94
Viewing information about SQLJ functions and procedures 97
AdVANCEA tOPICS ...uuiiiiiiiee e 98
Mapping Java and SQL datatypescccvvvvvereeeeriiiiinneneeennnn 98
Using the command main method..............cccccvveeeeiiniinnnenn. 102
SQLJ and Sybase implementation: a comparison 102
SQLIEXaMPIES CIASSvvvviiieiiiiiiiiiiiiie sttt 105
Introduction to XML in the Databasec.ooooiiiiiiiiiinn. 109
INEFOTUCTION ... 109
Source code and JavadoC............eeeeeeiiiiiiiiiiiee e 110
REFEIENCES ... 110
AN overview Of XMLccoviiiiiiieieec e 111
A sample XML dOCUMENLc.uvviviieeeiiiiiiiieee e eeiariee e 111
XML dOCUMENT tYPES..ciieeiiiiiiiiieii e e ettt ee e e e e ee e e e e e 116
XSL: formatting XML informationccccceeviiiiiivenieeeniinns 118
Character sets and XML data..........ccoooeeeeiiiieeeiniiiee e 118
XML PAISEIS ..o s 119
Selecting Data With XOQLuuiiiiiiiiiiiiiieee s 121
Accessing the XML PArSErccceeiiicciviriiieeesiiiiiiiee e e e s eeiinaeeaae s 121
Setting the CLASSPATH environment variable 122
Installing XQL in Adaptive SErVerccccccceeiiniiiiiiiiee e 122
Converting a raw XML document to a parsed version 123
Inserting XML dOCUMENTS........cooviiiiiiiiiieeiniiiiieee e 123
Updating XML dOCUMENTScccceiiiiiiiiiiiiieeeeeeiiiiieeee e 124
Deleting XML dOCUMENTSccoovviiiiiiiieeeeieniiiiieee e 124
Memory requirements for running the query engine inside
Adaptive SEIVETvviiiiee i 124
L0 1S 1 o 1 (@] PSRRI 125
Query structures that affect performance.............cccccceeeeiiins 127
EXAMPIES... .ottt 128
Other usages of the XQL package...........ccccvvvvvieeeeiiiiiiniiieee e, 130
com.sybase.xml.xgl.XgIDriver SyntaX...........cccoecvvveeeeeennininnns 130
Validating your dOCUMENT..........uuviiiieiiiiiiiiiiie e 132
Using XQL to develop standalone applications..................... 133
D@ I 411 T T PP PPPPPPPPINS 136
Methods in com.sybase. xml.Xxgl.Xgl.......ccooceveeiiiniiiiiiiiiniiiee, 136
Parse(String XMIDOC)uvvviiiiiiiiiiiiie e 136

Contents

parse(InputStream xml_document, boolean validate).................. 137
query(String query, String XMIDOC)cccvvveiieeesiiiiiieeree e 138
query(String query, InputStream XmIDOC)ccccvvivciviieereeesiinnnns 138
query(String query, SybXmiStream XxmIDOC)cccvveviierniinnnns 139
query(String query, IXmI XMI) ..o 139
sybase.aseutils.SybXmlStream..........cccccceriiiiiiiiin 139
com.sybase.xml.xgl.store.SybMemXmiStream.............cccccceevnnnns 140
com.sybase.xml.xgl.store.SybFileXmIStreamcccccceveeniiins 140
setParser(String parserNamMEe)oocvvvveeeeeeeiiiiiiiieee e 140
TESEEPAISENeeiiieiiiiee ettt e e 141
CHAPTER 8 Specialized XML ProCesSiNgcceeeeeiiviiiiiiiiniieiieeieeeeessesssnnennnns 143
The OrderXml class for order documentscccoeceeeeiiieeeenennn. 143
OrderXml(String) CONSIIUCLONvvveeeeeiiiiiiiie e 144
OrderXml(date, customerid, SEIVer)ccccveeviiiciiiieeeeee s 144

void order2Sql(String ordersTableName, String server) 144
static void createOrderTable

(String ordersTableName, String server)........ccccccoevvvnns 145
void setOrderElement

(String elementName, String newValue)ccccceevenene 145
String getltemElement

(int itemNumber, String elementName)...........ccccccovvnne 145

void setltemElement
(int itemNumber, String elementName, String newValue 146
String getltemAttribute

(int itemNumber, elementName, attributeName)............ 146
void setltemAttribute (int itemNumber, elementName,
attributeName, newValue)ccccvvevieeeiiiciiience e 146
void appendltem
(newltemid, newltemName, newQuantity, newUnit)....... 147
void deleteltem(int itemNUMbEr)cccoovviiiiiiiiiee, 147
Storing XML dOCUMENTS ...cceieiviiiiiiiiiiie ettt e e 147
Mapping and StOrage........cc.uuvvvieeeeiiiiiiiiieee e esiiiieee e 148
Advantages and disadvantages of storage options............... 148
Client or server considerations.............ccceevvvereriiieeennineeenns 149
Creating and populating SQL tables for order data...................... 149
Tables for element Storage..........cccvveeeeeeeeiiiiiiieee e eeeiiiieeenn 150
Tables for document and hybrid storage..............coccvvvveeeennn. 151
Using the element storage technique.........ccccccoeccvvvieeeeee e, 151
Composing order documents from SQL data...........c...cccoueees 151
Translating data from an XML order into SQL............cccece... 153
Using the document storage technique.............ccccvvveevieeiiiciinnen. 154
Storing XML order documents in SQL columns 154

Accessing the elements of stored XML order documents...... 155

Vii

Contents

Server access to order elements...........cccceevvviee e inieeene 158
Appending and deleting items in the XML document............ 159
Using the hybrid storage teChnique...........c.evveeeeeiiiiiiiiiieeee s 159
CHAPTER 9 XML for SQL ReSUIt SEtS ..ooiiiiiiiiiiiiieeeeeeeec e 161
The ReSUILSEtXML CIasS.......ccvveiiiiiiiiiiiie e 161
ResultSetXmI(String)........cvveeeiiiciiiiiiie e 161
Constructor: ResultSetXml
(query, cdataColumns, colNames, Server)cccccoeueis 162
ResultXml eXamplecoeevieeiiiiieccee e 162
String toSqlScript
(resultTableName, columnPrefix, goOption) 162
String getColumn(int rowNumber, int columnNumber).......... 163
String getColumn(int rowNumber, String columnName) 163
void setColumn
(int rowNumber, int columnNumber, newValue)............. 163
void setColumn
(int rowNumber, String columnName, newValue) 164

Boolean allString

(int ColumnNumber, String compOp, String comparand) 164
Boolean someString

(int columnNumber, String compOp, String comparand) 164

A customizable example for different result sets............ccccvveeenn. 165
The ResultSet docuUmMENt tYPeevvvveeviiiiiiiiiieeee e 166
Using the element storage technique............cccccovviiiiiieennenn, 170

Generating a ResultSet in the client.............cccceiiiie, 171

Generating a result set in Adaptive Serverccccoccvvveiieenninns 171

Translating the XML ResultSet document in the client 172

Translating the XML ResultSet Document in Adaptive Server..... 173

Using the document storage technique.............cccvvveeveeciiiciinnen. 173
Storing an XML ResultSet document in a SQL column......... 173
Accessing the columns of stored ResultSet documents 174
Quantified comparisons in stored ResultSet documents....... 177

CHAPTER 10 Debugging Java in the Databasecccccocvvvveeeie s 181

Introduction to debugging Java..........ccccvvveeeeeeeiiiiiiiiee e 181
How the debugger Works...........cocccvviieeiiiiiieee e, 181
Requirements for using the Java debuggerccccvveeeeennn. 181
What you can do with the debugger...........cccccceiiiiiiiiiennnnnnn, 182

Using the debugger.........o i 182
Starting the debugger and connecting to the database......... 182
Compiling classes for debuggingcccccveeiviiiiiiienieeniiinns 183
Attaching to a Java VMooociiiiiiiiiiiiieceee e 183

viii

Contents

The SOUIrCe WINAOWueiiiiiiiie it 184
(07010 0 13U PERRRR 185
Setting breakpoints..........cooocviiiiiiie 186
Disconnecting from the database.............cccoccviieiiiiniiiiiinnn. 188

A debugging tULOrIAlooouviiiiiiee i 189
Before you Degin ... 189
Start the Java debugger and connect to the database.......... 189
Attach t0 a Java VMcociiiiiie e 190
Load source code into the debugger..........cccvvveeiiiiiiiiiinnnen. 190
Step through source codecccceeeeeiiiiiiiiieee e, 191
Inspecting and modifying variablesccccccceiiiiciiinnneen, 192
CHAPTER 11 Network Access Using java.net......cccccvveeeeieeeee i 195
OVEIVIBW ...ttt ettt ettt a e bt e e s snbae e e s nneeee s 195
JAVANET ClASSES....cciiiiiiiiie ettt 196
Setting UP JAVA.NEL ... 196
EXAMPIE USAQE ...ttt 197
USINg SOCKEL ClaSSEScccvviiiiiieee it 197
Using the URL ClasS.......ccuvveiiiiiiiiiiiiiece i 200
USEI NOTEScviiiiiie ittt 202
Where t0 go for help......ooiiiiiiii 202
CHAPTER 12 Reference TOPICS .o 205
ASSIGNIMENTS ..ottt 205
Assignment rules at compile-timeooccvveevieeiiiniiiieeneeenn, 206
Assignment rules at runtime..........ccccveeeeeeeiiciiiieee e 206
AlIOWEd CONVEISIONSeeiieiiiieee it ettt e e 207
Transferring Java-SQL objects to clientscccccceeeviicviiieennenn, 207
Supported Java API packages, classes, and methods................ 208
Supported Java packages and classes.............cccccveeeeeeiiinns 208
Unsupported Java packages and classes........ccccccceeeeeenvnnnen. 209
Unsupported java.sql methods and interfaces 209
INVOKING SQL frOM JAVA........ceeiiiiiiiiiiiiiiiiee i 211
Special conSIderationscccuvvveeeeiiiiiiiiiiee e 211
Transact-SQL commands from Java methods..............evvvvvvvinnnnns 212
Datatype mapping between Java and SQL..............oecuvvneeen. 217
Java-SQL identifierS.........uuuueeeieiiiiiiiiieiirieieeereneeeernerneereenrrne. 219
Java-SQL class and package names...........occcvvveevieeiiiniiiineeneeenn, 220
Java-SQL column declarationscccvveeeeeeiiiiiiiieee e 221
Java-SQL variable declarationsccccceeeeeeviiiiiieeee e 221
Java-SQL column referenCes.........coocuvvveeeee i 222
Java-SQL member references.........ccccveveeeeeiiciiiieee e 223
Java-SQL method callsccooeeiiiiiiiiiiiiee e 224

Contents

About This Book

Audience

How to use this book

Thisbook describes how to install and use Java classes and methodsin the
Sybase® Adaptive Server® Enterprise database.

Thisbook is for Sybase System Administrators, Database Owners, and
userswho are familiar with the Java programming language and Transact-
SQL®, the Sybase version of Structured Query Language (SQL).
Familiarity with Java Database Connectivity (JDBC), the eXtensible
Markup Language (XML), and the Extensible Query Language (XQL) is
assumed for those who use these features.

Thisbook will assist you ininstalling, configuring, and using Java classes
and methods in the Adaptive Server database. It includes these chapters:

e Chapter 1, “An Introduction to Javain the Database,” provides an
overview of Javain Adaptive Server, including a“questions and
answers’ section for both novice and experienced Java users.

e Chapter 2, “Preparing for and Maintaining Java in the Database,”
describes the Java runtime environment and the steps for enabling
Javaon the server and installing Java classes.

e Chapter 3, “Using Java Classes in SQL,” describes how to use Java-
SQL classes in your Adaptive Server database.

e Chapter 4, “Data Access Using JDBC,” describes how you use a
JDBC driver (on the server or on the client) to perform SQL
operations in Java.

e Chapter 5, “SQLJ Functions and Stored Procedures,” describes how
you can enclose and use Java methods in SQL wrappers.

e Chapter 6, “Introduction to XML in the Database,” provides an
overview of XML and the methods for storing XML documentsin
Adaptive Server and generating them from SQL data.

Chapters 7, 8, and 9 describe other waysthat you can use XML inthe
Adaptive Server database.

e Chapter 7, “ Selecting Data with XQL,” describes how to select raw
datafrom Adaptive Server using the XQL language and display it as
an XML document.

Xi

About this book

Related documents

Xii

e Chapter 8, “Specialized XML Processing,” describes the OrderXxML
class, which is designed for an example application that uses XML
documents for customer Order data, and is written specifically to
process XML documents for order data.

e Chapter 9, “XML for SQL Result Sets,” describes the ResultSetXML
class, which allows you to generate an XML document representing
an SQL result set, and to access and update such an XML document.

e Chapter 10, “Debugging Javain the Database,” describes how you
use the Sybase debugger with Java.

e Chapter 11, “Network Access Using java.net,” describes how you
can use java.net, a package that allows you to create networking
applications over TCP/IP. It enables classes running in Adaptive
Server to access different kinds of servers.

« Chapter 12, “Reference Topics,” providesinformation about datatype
mapping, Java-SQL syntax, and other useful information.

In addition, a glossary provides descriptions of the Java and Java-SQL
terms used in this book.

The following documents comprise the Sybase Adaptive Server
Enterprise documentation:

e Therelease bulletin for your platform — contains last-minute
information that was too late to be included in the books.

A more recent version of the release bulletin may be available on the
World Wide Web. To check for critical product or document
information that was added after the release of the product CD, use
the Sybase Technical Library.

* Thelnstallation Guide for your platform — describes installation,
upgrade, and configuration procedures for all Adaptive Server and
related Sybase products.

« Configuring Adaptive Server Enterprisefor your platform —provides
instructions for performing specific configuration tasks for Adaptive
Server.

e What's New in Adaptive Server Enterprise? — describes the new
featuresin Adaptive Server version 12.5, the system changesadded to
support those features, and the changes that may affect your existing
applications.

About this book

Transact-SQL User’s Guide — documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This manual
serves as atextbook for beginning users of the database management
system. This manual also contains descriptions of the pubs2 and
pubs3 sample databases.

System Administration Guide — provides in-depth information about
administering servers and databases. This manual includes
instructionsand guidelinesfor managing physical resources, security,
user and system databases, and specifying character conversion,
international language, and sort order settings.

Reference Manual — contains detailed information about all Transact-
SQL commands, functions, procedures, and datatypes. This manual
also contains alist of the Transact-SQL reserved words and
definitions of system tables.

Performance and Tuning Guide — explains how to tune Adaptive
Server for maximum performance. Thismanual includesinformation
about database design issues that affect performance, query
optimization, how to tune Adaptive Server for very large databases,
disk and cache issues, and the effects of locking and cursors on
performance.

The Utility Guide — documents the Adaptive Server utility programs,
such asisgl and bcp, which are executed at the operating system level.

The Quick Reference Guide— provides acomprehensive listing of the
names and syntax for commands, functions, system procedures,
extended system procedures, datatypes, and utilitiesin apocket-sized
book. Available only in print version.

The System Tables Diagram — illustrates system tables and their
entity relationshipsin aposter format. Available only in print version.

Error Messages and Troubleshooting Guide — explains how to
resolve frequently occurring error messages and describes solutions
to system problems frequently encountered by users.

Component Integration Services User’s Guide — explains how to use
the Adaptive Server Component Integration Services feature to
connect remote Sybase and non-Sybase databases.

Using Sybase Failover in a High Availability System — provides
instructions for using Sybase's Failover to configure an Adaptive
Server as acompanion server in a high availability system.

Xiii

About this book

Other sources of
information

Xiv

Using Adaptive Server Distributed Transaction Management
Features—explainshow to configure, use, and troubleshoot Adaptive
Server DTM features in distributed transaction processing
environments.

EJB Server User’s Guide — explains how to use EJB Server to deploy
and execute Enterprise JavaBeans in Adaptive Server.

XA Interface Integration Guide for CICS, Encina, and TUXEDO —
provides instructions for using Sybase’'s DTM XA interface with
X/Open XA transaction managers.

Glossary — defines technical terms used in the Adaptive Server
documentation.

Sybase jConnect for JDBC Programmer’s Reference — describes the
jConnect for IDBC product and explains how to useit to access data
stored in relational database management systems.

Full-Text Search Specialty Data Sore User’s Guide — describes how
to use the Full-Text Search feature with Verity to search Adaptive
Server Enterprise data.

Historical Server User’s Guide —describes how to use Historical
Server to obtain performance information for SQL Server and
Adaptive Server.

Monitor Server User’s Guide — describes how to use Monitor Server
to obtain performance statistics from SQL Server and Adaptive
Server.

Monitor Client Library Programmer’s Guide—describeshow to write
Monitor Client Library applications that access Adaptive Server
performance data.

Use the Sybase Technical Library CD and the Technical Library Product
Manuals Web site to learn more about your product:

Technical Library CD contains product manuals and isincluded with
your software. The DynaText browser (downloadable from Product
Manuals at http://www.sybase.Com/detaiI/1,3693,1010661,00.htm|)
allows you to access technical information about your product in an
easy-to-use format.

Refer to the Technical Library Installation Guide in your
documentation package for instructions on installing and starting the
Technical Library.

About this book

Technical Library Product Manuals Web siteisan HTML version of
the Technical Library CD that you can access using a standard Web
browser. In addition to product manuals, you will find links to the
Technical Documents Web site (formerly known as Tech Info
Library), the Solved Cases page, and Sybase/Powersoft newsgroups.

To access the Technical Library Product Manuals Web site, go to
Product Manuals at http://www.sybase.com/support/manuals/.

Sybase certifications on Technical documentation at the Sybase Web site is updated frequently.

the Web

[JFor the latest information on product certifications

1

5

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select Products from the navigation bar on the left.
Select a product name from the product list.

Select the Certification Report filter, specify atime frame, and click
Go.

Click a Certification Report title to display the report.

[JFor the latest information on EBFs and Updates

1

Point your Web browser to Technical Documents at
http://www.sybase.com/support/techdocs/.

Select EBFs/Updates. Enter user name and password information, if
prompted (for existing Web accounts) or create anew account (afree
service).

Specify atime frame and click Go.
Select a product.
Click an EBF/Update title to display the report.

[TTo create a personalized view of the Sybase Web site (including support

pages)

Set up aMySybase profile. MySybase is afree service that allows you to
create a personalized view of Sybase Web pages.

1

2

Point your Web browser to Technical Documents at
http://lwww.sybase.com/support/techdocs/

Click MySybase and create a MySybase profile.

XV

About this book

Java syntax conventions This book uses these font and syntax conventions for Java items:

» Classes, interfaces, methods, and packages are shown in Helvetica
within paragraph text. For example:

SybEventHandler interface
setBinaryStream() method
com.Sybase.jdbx package

« Objects, instances, and parameter names are shown in italics. For
example:

“In the following example, ctx is a DirContext object.”

“ eventHdler is an instance of the SybEventHandler class that you
implement.”

“The classes parameter is a string that lists specific classes you want
to debug.”

« Javanames are always case sensitive. For example, if a Java method
name is shown as Misc.stripLeadingBlanks(), you must type the
method name exactly as displayed.

Transact-SQL syntax Thisbook usesthe same font and syntax conventionsfor Transact-SQL as
conventions other Adaptive Server documents:

¢ Command names, command option names, utility names, utility
flags, and other keywords arein Helveticain paragraph text. For
example:

select command
isql utility
fflag

e Variables, or wordsthat stand for values that you fill in, areinitalics.
For example:

user_name
Sserver_name

* Code fragments are shown in a monospace font.Variablesin code
fragments (that is, words that stand for values that you fill in) are
italicized. For example:

Connection con = DriverManager.getConnection
("jdbc:sybase:Tds: host:port", props) ;

XVi

About this book

If you need help

You can disregard case when typing Transact-SQL keywords. For
example, SELECT, Select, and select are the same.

Additional conventionsfor syntax statementsin thismanual are described
in Table 1. Examplesillustrating each convention can be found in the
System Administration Guide.

Table 1: Syntax statement conventions

Key
{1}

[]

()
|

Definition

Curly bracesindicate that you choose at |east one of the enclosed
options. Do not include braces in your option.

Brackets mean choosing one or more of the enclosed optionsis
optional. Do not include brackets in your option.

Parentheses are to be typed as part of the command.

The vertical bar means you may select only one of the options
shown.

The comma means you may choose as many of the options shown
asyou like, separating your choices with commas to be typed as
part of the command.

Each Sybase installation that has purchased a support contract has one or
more designated people who are authorized to contact Sybase Technical
Support. If you cannot resolve a problem using the manualsor online help,
please have the designated person contact Sybase Technical Support or
the Sybase subsidiary in your area.

XVii

XViil

CHAPTER 1 An Introduction to Java in the
Database

This chapter provides an overview of Java classesin Adaptive Server

Enterprise.
Topic Page
Advantages of Javain the database 1
Capabilities of Javain the database 2
Standards 4
Javain the database: questions and answers 5
Sample Java classes 11

Advantages of Java in the database

Adaptive Server provides a runtime environment for Java, which means
that Java code can be executed in the server. Building aruntime
environment for Javain the database server provides powerful new ways
of managing and storing both data and logic.

¢ You can use the Java programming language as an integral part of
Transact-SQL.

* You can reuse Java code in the different layers of your application—
client, middle-tier, or server—and use them wherever makes most
sense to you.

« Javain Adaptive Server provides a more powerful language than
stored procedures for building logic into the database.

« Javaclasses becomerrich, user-defined data types.

e Methods of Java classes provide new functions accessible from SQL .

Capabilities of Java in the database

» Javacan be used in the database without jeopardizing the integrity,
security, and robustness of the database. Using Java does not alter the
behavior of existing SQL statements or other aspects of non-Java
relational database behavior.

Capabilities of Java in the database

Javain Adaptive Server alows you to:

* Invoke Java methods in the database
» Store Java classes as datatypes

» Storeand query XML in the database

Invoking Java methods in the database

You can install Java classesin Adaptive Server, and then invoke the static
methods of those classes in two ways:

* You can invoke the Java methods directly in SQL.

* You can wrap the methods in SQL names and invoke them as you would
standard Transact-SQL stored procedures.

Invoking Java methods directly in SQL

The methods of an object-oriented language correspond to the functions of a
procedural language. You can invoke methods stored in the database by
referencing them, with name qualification, on instances for instance methods,
and on either instances or classesfor static (class) methods. You caninvokethe
method directly in, for example, Transact-SQL select lists and where clauses.

You can use static methods that return a value to the caller as user-defined
functions (UDFs).

Certain restrictions apply when using Java methods in this way:

» If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

Chapter 1 An Introduction to Java in the Database

e Output parameters are not supported. A method can manipulate the dataiit
receives from a JDBC connection, but the only value it can return to its
caller isasingle return value declared as part of its definition.

Invoking Java methods as SQLJ stored procedures and functions

You can enclose Java static methodsin SQL wrappers and use them exactly as
you would Transact-SQL stored procedures or built-in functions. This
functionality:

* Allows Java methods to return output parameters and result sets to the
calling environment.

« Allowsyou to take advantage of traditional SQL syntax, metadata, and
permission capabilities.
« Allowsyou to invoke SQL J functions across databases.

* Allowsyou to use existing Java methods as SQL J procedures and
functions on the server, on the client, and on any SQL J-compliant, third-
party database.

e Complieswith Part 1 of the ANSI standard specification. See“ Standards’
on page 4.

Storing Java classes as datatypes

With Javain the database, you can install pure Java classesin a SQL system,
and then use those classes in anatural manner as datatypesin a SQL database.
This capability adds afull object-oriented datatype extension mechanism to
SQL, using amodel that is widely understood and a language that is portable
and widely available. The objectsthat you create and storewith thisfacility are
readily transferable to any Java-enabled environment, either in another SQL
system or standalone Java environment.

This capability of using Java classes in the database has two different but
complementary uses:

e It provides atype extension mechanism for SQL, which you can use for
datathat is created and processed in SQL .

Standards

» It providesapersistent datacapability for Java, which you can useto store
datain SQL that is created and processed (mainly) in Java. Javain
Adaptive Server provides a distinct advantage over traditional SQL
facilities: you do not need to map the Java objectsinto scalar SQL
datatypes or store the Java objects as untyped binary strings.

Storing and querying XML in the database

Standards

Similar to Hypertext Markup Language (HTML), the eXtensible Markup
Language (XML) alows you to define your own application-specific markup
tags and is thus particularly suited for data interchange.

Adaptive Server alows you to:

» Generate XML-formatted documents from raw data stored in Adaptive
Server.

* Store XML documents and data extracted from them in Adaptive Server.
* Query XML documents stored on the Web.

Adaptive Server usesthe XML Query Language (XQL) to search XML
documents. A Java-based XQL query processor isincluded with Adaptive
Server. Because many of the tools commonly used to process XML arewritten
in Java, Adaptive Server provides an excellent base for XML-SQL
applications.

The SQLJ consortium of SQL vendors devel ops specifications for using Java
with SQL. The consortium submits these specificationsto ANSI for formal
processing as standards. The standards can be found on the Web at
http://www.ansi.org. In this document, SQL J refersto capabilities compliant
with SQLJ Part 1 of the standard specifications

Compliance with SQL J standards ensures that Sybase functionality portsto al
third-party, standards-compliant relational databases.

The standard specifications are in three parts:

» Part 0—"Database Language SQL—Part 10: Object Language Bindings
(SQL/OLB),” ANSI X3.135.10-1998.

Chapter 1 An Introduction to Java in the Database

Specificationsfor embedding SQL statementsin Javamethods. Similar to
the traditional SQL facilities for embedded SQL in COBOL and C and
other languages. The Java classes containing embedded SQL statements
are precompiled to pure Java classes with JDBC calls.

e Part1-"SQLJ—Part 1: SQL Routines using the Java Programming
Language,” ANSI NCITSN331.1.

Specifications for installing Java classesin a SQL system, and for
invoking Java static methods as SQL stored procedures and functions.

e Part 2—"SQLJ—Part 2: SQL Types using the Java Programming
Language,” ANSI NCITSN331.2.

Specifications for using Java classes as SQL datatypes.

Sybase supports Part 1 of the specification. In addition, Sybase extends the
capabilities provided in the standard. For example, Adaptive Server allowsyou
to reference Java methods and classes directly in SQL, whereas SQLJ Parts 1
and 2 require that you use SQL aliases.

Java in the database: questions and answers

Although this book assumes that readers are familiar with Java, thereis much
to learn about Javain a database. Sybaseis not only extending the capabilities
of the database with Java, but also extending the capabilities of Java with the
database. See

Both experienced and novice Java users should read this section. It usesa
question-and-answer format to familiarize you with the basics of Javain
Adaptive Server.

What are the key features?

All of these points are explained in detail in later sections. With Javain
Adaptive Server, you can:

* RunJavain the database server using an internal Java Virtual Machine
(JavaVM).

e Call Javafunctions (methods) directly from SQL statements.

Java in the database: questions and answers

» Wrap Javamethodsin SQL aliases and call them as standard SQL stored
procedures and built-in functions.

e Access SQL datafrom Javausing an internal JDBC driver.
e UseJavaclasses as SQL datatypes.
* Saveinstances of Javaclassesin tables.

e Generate XML-formatted documents from raw data stored in Adaptive
Server databases and, conversely, store XML documents and data
extracted from them in Adaptive Server databases.

» Debug Javain the database.

How can | store Java instructions in the database?

Javais an object-oriented language. Its instructions (source code) comein the
form of classes. You write and compile the Javainstructions outside the
database into compiled classes (byte code), which are binary filesholding Java
instructions.

You then install the compiled classes into the database, where they can be
executed in the database server.

Adaptive Server is aruntime environment for Java classes. You need a Java
development environment, such as Sybase PowerJ™ or Sun Microsystems
Java Development Kit (JDK), to write and compile Java.

How is Java executed in the database?
To support Javain the database, Adaptive Server:

e Comeswithitsown JavaVM, specifically developed for handling Java
processing in the server.

» Usesitsown JDBC driver that runsin the server and accesses a database.

The Sybase Java VM runs in the database environment. It interprets compiled
Javainstructions and runs them in the database server.

Chapter 1 An Introduction to Java in the Database

The Sybase Java VM meets the JCM specifications from Java Software; it is
designed to work with the 2.0 version of the Java API. It supports public class
and instance methods; classesinheriting from other classes; the Java API; and
accessto protected, public, and private fields. Some Java API functionsthat are
not appropriate in a server environment, such as user interface elements, are
not supported. All supported Java APl packages and classes come with
Adaptive Server.

The Adaptive Server JavaVM isavailable at al timesto perform a Java
operation whenever it is required as part of the execution of a SQL statement.
The database server starts the Java VM automatically when it is needed; you
do not need to take any explicit action to start or stop the Java VM.

Client- and server-side JDBC
JDBC istheindustry standard API for executing SQL in Java.

Adaptive Server provides a native JDBC driver. Thisdriver is designed to
maximize performance as it executes on the server because it does not need to
communicate across the network. Thisdriver permits Java classesinstalled in
adatabase to use JDBC classes that execute SQL statements.

When JDBC classes are used within aclient application, you typically must use
jConnect™ for JDBC™, the Sybase client-side JDBC database driver, to
provide the classes necessary to establish a database connection.

How can | use Java and SQL together?

A guiding principle for the design of Javain the database is that it provides a
natural, open extension to existing SQL functionality.

e Java operationsareinvoked from SQL — Sybase has extended the range of
SQL expressionsto includefieldsand methods of Javaobjects, so that you
can include Java operationsin a SQL statement.

« Java methods as SQLJ stored procedures and functions — you create a
SQLJalias for Java static methods, so that you can invoke them as
standard SQL stored procedures and user-defined functions (UDFs).

« Java classes become user-defined datatypes — you store Java class
instances using the same SQL statements asthose used for traditional SQL
datatypes.

Java in the database: questions and answers

You can use classes that are part of the Java API, and classes created and
compiled by Java developers.

What is the Java API?

The Java Application Programming Interface (API) is a set of classes defined
by Sun Microsystems. It providesarange of base functionality that can be used
and extended by Java developers. It isthe core of “what you can do” with Java.

The Java APl offers considerable functionality initsown right. A large portion
of the Java API isbuilt in to any database that is enabled to use Java code—
which includes the majority of nonvisual classes from the Java API aready
familiar to devel opers using the Sun Microsystems JDK.

How can | access the Java API from SQL?

You can use the Java AP in stored procedures, in UDFs, and in SQL
statements as extensions to the available built-in functions provided by SQL.

For example, the SQL function PI(*) returns the value for Pi. The Java API
classjavalang.Math has a parallel field named PI that returns the same value.
But java.lang.Math also has afield named E that returns the base of the natural
logarithm, as well as a method that computes the remainder operation on two
arguments as prescribed by the IEE754 standard.

Which Java classes are supported in the Java API?

Not all Java API classes are supported in the database. Some classes, for
example, the java.awt package that contains user interface components for
applications, are not appropriate inside a database server. Other classes,
including part of java.io, deal with writing information to adisk, and are also
not supported in the database server environment. See Chapter 12, “ Reference
Topics,” for alist of supported and unsupported classes.

Chapter 1 An Introduction to Java in the Database

Can linstall my own Java classes?

You caninstall your own Java classesinto the database as, for example, auser-
created Employee class or Inventory class that a devel oper designed, wrote,
and compiled with a Java compiler.

User-defined Java classes can contain both information and methods. Once
installed in a database, Adaptive Server lets you use these classesin all parts
and operations of the database and execute their functionality (in the form of
class or instance methods).

Can | access data using Java?

The JDBC interface is an industry standard designed to access database
systems. The JDBC classes are designed to connect to a database, request data
using SQL statements, and return results that can be processed in the client
application.

You can connect from a client application to Adaptive Server Enterprise via
JDBC, using jConnect or aJDBC/ODBC bridge. Adaptive Server also
provides an internal JDBC driver, which permits Java classesinstaled in a
database to use JDBC classes that execute SQL statements.

Can | use the same classes on client and server?

You can create Java classes that can be used on different levels of an enterprise
application. You can integrate the same Java class into either the client
application, amiddle tier, or the database.

How do | use Java classes in SQL?

Using Java classes, whether user-defined or from the Java API, is athree-step
activity:

1 Writeor acquire aset of Java classes that you want to use as SQL
datatypes, or as SQL aliases for static methods.

2 Install those classesin the Adaptive Server database.
3 Usethose classesin SQL code:

e Cadl class (static) methods of those classes as UDFs.

Java in the database: questions and answers

» Declarethe Java classes as datatypes of SQL columns, variables, and
parameters. In this book, they are called Java-SQL columns,
variables, and parameters.

» Reference the Java-SQL columns, their fields, and their methods.

» Wrap static methodsin SQL aliasesand use them as stored procedures
or functions.

Where can | find information about Java in the database?

There are many books about Java and Java in the database. Two particularly
useful books are:

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, The Java™
Language Specification, Second Edition, Addison-Wesley, 2000.

Seth White, Maydene Fisher, Rick Cattell, Graham Hamilton, and Mark
Hapner, JDBC™ API Tutorial and Reference, Second Edition, Addison-
Wesley, 1999.

What you cannot do with Java in the database

Adaptive Server is aruntime environment for Java classes, not a Java
development environment.

10

You cannot carry out these tasks in the database:

Edit class source files (* .java files).
Compile Java class source files (*.java files).

Execute Java APIs that are not supported, such as applet and visual
classes.

UseJavathreading. Adaptive Server doesnot support java.lang.Thread and
java.lang.ThreadGroup. If you attempt to spawn athread, Adaptive Server
throws java.lang.UnsupportedOperationException.

Use Java objects as parameters sent to aremote procedure call or received
from aremote procedure call. They do not trandlate correctly.

Chapter 1 An Introduction to Java in the Database

e Sybase recommends that you do not use static variables in methods
referenced by Java-SQL functions, SQLJ functions, or SQL J stored
procedures. The values returned for these variables may be unreliable as
the scope of the static variable isimplementation-dependent.

Sample Java classes

The chapters of this book use simple Java classes to illustrate basic principles
for using Javain the database. You can find copies of these classesin the
chapters that describe them and in the Sybase release directory in
$SYBASE/$SYBASE_ASE/sample/JavaSgl (UNIX) or %SYBASEY\Ase-

12 S\sample\JavaSgl (Windows NT). This subdirectory also contains Javadoc
facilities so that you can view specifications about sample classes and methods
with your Web browser.

11

Sample Java classes

12

CHAPTER 2 Preparing for and Maintaining

Java in the Database

This chapter describes the Java runtime environment, how to enable Java
on the server, and how to install and maintain Javaclassesin the database.

Topic Page
The Java runtime environment 13
Enabling the server for Java 15
Creating Java classes and JARs 16
Installing Java classes in the database 17
Viewing information about installed classes and JARs 20
Downloading installed classes and JARs 21
Removing classes and JARs 21

The Java runtime environment

The Adaptive Server runtime environment for Javarequiresa JavaVM,
which is available as part of the database server, and the Sybase runtime
Javaclasses, or Java API. If you are running Java applications on the
client, you may also require the Sybase JDBC driver, jConnect, on the

client.

Java classes in the database

You can use either of the following sources for Java classes:

e Sybase runtime Java classes

¢ User-defined classes

13

The Java runtime environment

Sybase runtime Java classes

The Sybase Java VM supports a subset of JDK version 2.0 (UNIX and
Windows NT) classes and packages.

The Sybase runtime Java classes are the low-level classes installed to Java
enable a database. They are downloaded automatically when Adaptive Server
isinstalled and are available thereafter from $SYBASE
/$SYBASE_ASE/lib/runtime.zip (UNIX) or
%SYBASEY0\%SYBASE_ASEYo\lib\runtime.zip (Windows NT). You do not
need to set the CLASSPATH environment variable specifically for Javain
Adaptive Server.

Sybase does not support runtime Java packages and classes that assume a
screen display, deal with networking and remote communications, or handle
security. See Chapter 12, “Reference Topics’ for alist of supported and
unsupported packages and classes.

User-defined Java classes

JDBC drivers

The Java VM

14

You install user-defined classes into the database using the installjava utility.
Once installed, these classes are avail able from other classes in the database
and from SQL as user-defined datatypes.

The Sybase native JDBC driver that comes with Adaptive Server supports
JDBC version 1.2. It is compliant with and supports several classes and
methods of JDBC version 2.0. See Chapter 12, “Reference Topics,” for a
complete list of supported and not supported classes and methods.

If your system requires a JDBC driver on the client, you must use jConnect
version 5.2 or later, which supports JDBC version 2.0.

To ensure that each invoked method is executed as quickly as possible, Sybase
provides aJava VM. The JavaVM runs on the server. The Java VM requires
little or no administration once installation is complete.

Chapter 2 Preparing for and Maintaining Java in the Database

Configuring memory for Java in the database

Use the sp_configure system procedure to change memory allocationsfor Java
in Adaptive Server. You can change the memory allocation for:

* size of global fixed heap — specifies memory space for internal data
structures.

* size of process object fixed heap — specifies the total memory space
available for all user connections using the Java VM.

* size of shared class heap — specifies the shared memory spacefor al Java
classes called into the Java VM.

See “Java Services’ in the System Administration Guide for complete
information about these configuration parameters.

Enabling the server for Java

To enable the server and its databases for Java, enter this command from isql:
sp_configure “enable java”, 1
Then shut down and restart the server.

By default, Adaptive Server is not enabled for Java. You cannot install Java
classes or perform any Java operations until the server is enabled for Java.

You can increase or decrease the amount of memory available for Javain
Adaptive Server and optimize performance using sp_configure. Java
configuration parameters are described in the System Administration Guide.

Disabling the server for Java
To disable Javain the database, enter this command from isq|:

sp_configure “enable java”, 0

15

Creating Java classes and JARs

Creating Java classes and JARs

The Sybase-supported classes from the JDK areinstalled on your system when
you install Adaptive Server version 12 or later. This section describesthe steps
for creating and installing your own Java classes.

To make your Java classes (or classes from other sources) available for usein
the server, follow these steps:

1 Write and save the Java code that defines the classes.

2 Compilethe Java code.

3 Create Javaarchive (JAR) files to organize and contain your classes.
4

Install the JARS/classes in the database.

Writing the Java code

Use the Sun Java SDK or a development tool such as Sybase PowerJto write
the Java code for your class declarations. Save the Java code in afile with an
extension of .java. The name and case of the file must be the same asthat of
the class.

Note Make certain that any Java APl classes used by your classes are among
the supported API classes listed in Chapter 12, “Reference Topics'.

Compiling Java code

This step turns the class declaration containing Java code into a new, separate
file containing bytecode. The name of the new fileisthe same asthe Java code
file but has an extension of .class. You can run acompiled Javaclassin aJava
runtime environment regardless of the platform on which it was compiled or
the operating system on which it runs.

Saving classes in a JAR file

You can organize your Java classes by collecting related classes in packages
and storing themin JAR files. JAR files allow you to install or remove related
classes as a group.

16

Chapter 2 Preparing for and Maintaining Java in the Database

Installing uncompressed JARs

Toinstall Javaclassesin adatabase, save the classes or packagesin aJAR file,
in uncompressed form. To create an uncompressed JAR file that contains Java
classes, use the Javajar cfo (“zero”) command.

InthisUNIX example, the jar command creates an uncompressed JAR file that
contains al .classfilesin the jcsPackage directory:

jar cf0 jcsPackage.jar jcsPackage/*.class

Installing compressed JARs

You can aso install acompressed JAR fileif you first expand the compressed
file using the x option of the jar command. In this UNIX example, abcPackage
isacompressed file.

1 Placethe compressed JAR filein an empty directory and expand it:

jar xf0 abcPackage.jar

2 Deletethe compressed JAR file so that it won't be included in the new,
uncompressed JAR file:

rm abcPackage.jar
3 Create the uncompressed JAR file:

jar cf0 abcPackage.jar*

Installing Java classes in the database

To ingtall Java classes from a client operating system file, use the installjava
(UNIX) or instjava (Windows NT) utility from the command line.

See the Adaptive Server Enterprise Utilities Guide for detailed information
about these utilities. Both utilities perform the same tasks; for simplicity, this
document uses UNIX examples.

17

Installing Java classes in the database

Using installjava

installjava copies a JAR file into the Adaptive Server system and makes the
Javaclasses contained in the JAR availablefor usein the current database. The
syntax is.

installjava

-f file_name

[-new | -update]

[-j jar_name]

[-S server_name]
[-U user_name]

[-P password]

[-D database_name]
[-l interfaces_file]

[-a display_charset]
[-J client_charset]

[-z language]

[-t timeout]

For example, to install classesin the addr.jar file, enter:
installjava -f “/home/usera/jars/addr.jar”

The —f parameter specifies an operating system file that contains a JAR. You
must use the complete path name for the JAR.

This section describes retained JAR files (using -j) and updating installed JARs
and classes (using new and update). For more information about these and the
other options available with installjava, see the Utility Guide.

Note When you install aJAR file, Application Server copiesthefileto a
temporary table and then installs it from there. If you install alarge JAR file,
you may need to expand the size of tempdb using the alter database command.

Retaining the JAR file

When aJAR isinstalled in a database, the server disassembles the JAR,
extracts the classes, and stores them separately. The JAR isnot stored in the
database unless you specify installjava with the -j parameter.

Use of -j determines whether the Adaptive Server system retains the JAR
specified ininstalljava or usesthe JAR only to extract the classesto beinstalled.

» If you specify the -j parameter, Adaptive Server installs the classes
contained in the JAR in the normal manner, and then retains the JAR and
its association with the installed classes.

18

Chapter 2 Preparing for and Maintaining Java in the Database

If you do not specify the -j parameter, Adaptive Server does not retain any
association of the classes with the JAR. Thisis the default option.

Sybase recommends that you specify a JAR name so that you can better
manage your installed classes. If you retain the JAR file:

You canremovethe JAR and all classes associated withiit, all at once, with
the remove java statement. Otherwise, you must remove each class or
package of classes one at atime.

You can use extractjava to download the JAR to an operating system file.
See “Downloading installed classes and JARS’ on page 21.

Updating installed classes

The new and update clauses of installjava indicate whether you want new
classes to replace currently installed classes.

If you specify new, you cannot install a class with the same name as an
existing class.

If you specify update, you can install a class with the same name as an
existing class, and the newly installed class replaces the existing class.

Warning! If you alter a class used as a column datatype by reinstalling a
modified version of the class, make sure that the modified class can read
and use existing objects (rows) in tables using that class as a datatype.
Otherwise, you may be unable to access existing objects without
reinstalling the original class.

Substitution of new classes for installed classes depends also on whether the
classes being installed or the already installed classes are associated with a
JAR. Thus:

If you update a JAR, al classesin the existing JAR are deleted and
replaced with classesin the new JAR.

A classcan beassociated only with asingle JAR. You cannot install aclass
inone JAR if aclass of that same nameisalready installed and associated
with another JAR. Similarly, you cannot install aclass not-associated with
aJARif that classis currently installed and associated with a JAR.

You can, however, install aclassin aretained JAR with the same name as
an installed class not associated with a JAR. In this case, the class not
associated with a JAR is deleted and the new class of the same nameis
associated with the new JAR.

19

Viewing information about installed classes and JARs

If you want to reorganize your installed classes in new JARS, you may find it
easier to first disassociate the affected classes from their JARs. See“ Retaining
classes’ on page 21 for more information.

Referencing other Java-SQL classes

Installed classes can reference other classes in the same JAR file and classes
previoudly installed in the same database, but they cannot reference classesin
other databases.

If the classesin aJAR file do reference undefined classes, an error may result:

» If anundefined classisreferenced directly in SQL, it causesa syntax error
for “undefined class.”

» If anundefined classis referenced within a Java method that has been
invoked, it throws a Java exception that may be caught in theinvoked Java
method or cause the general SQL exception described in “ Exceptionsin
Java-SQL methods” on page 31.

The definition of a class can contain references to unsupported classes and
methods as long as they are not actively referenced or invoked. Similarly, an
installed class can contain a reference to a user-defined class that is not
installed in the same database as long as the classis not instantiated or
referenced.

Viewing information about installed classes and JARs

20

To view information about classes and JARsinstalled in the database, use . The
syntax is:.

sp_helpjava [‘class’ [, name [, 'detail' | , 'depends']] |
‘jar’ [, name [, 'depends']]]

Toview detailed information about the Address class, for example, logintoisgl
and enter:

sp_helpjava “class”, Address, detail

See“sp_helpjava’ in the Reference Manual for more information.

Chapter 2 Preparing for and Maintaining Java in the Database

Downloading installed classes and JARsS

You can download copies of Java classes installed on one database for usein
other databases or applications.

Use the extractjava system utility to download a JAR file and its classesto a
client operating system file. For example, to download addr.jar to
~/home/usera/jars/addrcopy.jar, enter:

extractjava -j ‘addr.jar‘ -f
‘~/home/usera/jars/addrcopy.jar'

See the Utility Guide manual for more information.

Removing classes and JARs

Use the Transact-SQL remove java statement to uninstall one or more Java-
SQL classes from the database. remove java can specify one or more Javaclass
names, Java package names, or retained JAR names. For example, to uninstall
the package utilityClasses, from isql enter:

remove java package “utilityClasses”

Note Adaptive Server does not allow you to remove classes that are used as
the datatypes for columns and parameters or that are referenced by SQLJ
functions or stored procedures.

You must make sure that you do not remove subclasses or classes that are used
as variables or UDF return types.

remove java package deletes all classes in the specified package and all of its
sub-packages.

See the Reference Manual for more information about remove java.

Retaining classes

You can delete aJAR file from the database but retain its classes as classes no
longer associated withaJAR. Useremove java with theretain classes option if,
for example, you want to rearrange the contents of several retained JARS.

21

Removing classes and JARs

For example, from isql enter:
remove java jar 'utilityClasses' retain classes

Once the classes are disassociated from their JARS, you can associate them
with new JARs using installjava with the new keyword.

22

CHAPTER 3

Using Java Classes in SQL

This chapter describes how to use Java classesin an Adaptive Server

environment. The first sections give you enough information to get

started; succeeding sections provide more advanced information.

Topics Page
General concepts 24
Using Java classes as datatypes 25
Invoking Java methodsin SQL 30
Representing Java instances 31
Assignment properties of Java-SQL dataitems 32
Datatype mapping between Java and SQL fields 35
Character sets for dataand identifiers 36
Subtypesin Java-SQL data 36
The treatment of nullsin Java-SQL data 38
Java-SQL string data 42
Type and void methods 43
Equality and ordering operations 45
Evaluation order and Java method calls 46
Static variables in Java-SQL classes 48
Java classes in multiple databases 49
Java classes 52

In this document, SQL columns and variables whose datatypes are Java-
SQL classes are described as Java-SQL columns and Java-SQL variables

or as Java-SQL dataitems.

The sample classes used in this chapter can be found in:

* $SYBASE/$SYBASE ASE/sample/Javasgl (UNIX)

* %SYBASE%\Ase-12 5\sample\Javasgl (Windows NT)

23

General concepts

General concepts

This sections provides general Java and Java-SQL identifier information.

Java considerations

Before you use Javain your Adaptive Server database, here are some genera
considerations.

» Javaclasses contain:
» Fieldsthat have declared Java datatypes.
» Methods whose parameters and results have declared Java datatypes.

» Javadatatypes for which there are corresponding SQL datatypes are
defined in “ Datatype mapping between Javaand SQL” on page 217.

» Javaclasses can include classes, fields, and methods that are private,
protected, friendly, or public.

Classes, fields and methods that are public can be referenced in SQL.
Classes, fields, and methods that are private, protected, or friendly cannot
be referenced in SQL, but they can be referenced in Java, and are subject
to normal Javarules.

» Javaclasses, fields, and methods all have various syntactic properties:
* Classes—the number of fields and their names
* Field —their datatypes

* Methods —the number of parameters and their datatypes, and the
datatype of the result

The SQL system determines these syntactic properties from the Java-SQL
classes themselves, using the Java Reflection API.

Java-SQL names

Java-SQL class names (identifiers) are limited to 255 bytes. Java-SQL field
and method names can be any length, but they must be 255 bytes or lessif you
use them in Transact-SQL. All Java-SQL names must conform to the rules for
Transact-SQL identifiersif you use them in Transact-SQL statements.

24

Chapter 3 Using Java Classes in SQL

Class, field, and method names of 30 or more bytes must be surrounded by
guotation marks.

Thefirst character of the name must be either an al phabetic character
(uppercase or lowercase) or an underscore () symbol. Subsequent characters
can include alphabetic characters, numbers, the dollar ($) symbol, or the
underscore () symbol.

Java-SQL names are always case sensitive, regardless of whether the SQL
system is specified as case sensitive or case insensitive.

See Java-SQL identifiers on page 219 for more information about identifiers.

Using Java classes as datatypes

After you have installed a set of Java classes, you can reference them as
datatypesin SQL. To be used as a column datatype, a Java-SQL class must be
defined as public and must implement either java.io.Serializable or
javaio.Externalizable.

You can specify Java-SQL classes as:
e The datatypes of SQL columns

e Thedatatypesof Transact-SQL variables and parametersto Transact-SQL
stored procedures

e Default values for SQL columns

When you create atable, you can specify Java-SQL classes as the datatypes of
SQL columns:

create table emps (
name varchar (30),
home_addr Address,
mailing addr Address2Line null)

The name column is an ordinary SQL character string, the home_addr and
mailing_addr columns can contain Java objects, and Address and Address2Line
are Java-SQL classes that have been installed in the database.

You can specify Java-SQL classes as the datatypes of Transact-SQL variables:

declare @A Address
declare @A2 Address2Line

25

Using Java classes as datatypes

You can also specify default values for Java-SQL columns, subject to the
normal constraint that the specified default must be aconstant expression. This
expression is normally a constructor invocation using the new operator with
constant arguments, such as the following:

create table emps (
name varchar (30),
home_addr Address default new Address
('Not known', ''),
mailing addr Address2Line

Creating and altering tables with Java-SQL columns

26

When you create or alter tables with Java-SQL columns, you can specify any
installed Java class as a column datatype. You can also specify how the
information inthe columnisto be stored. Your choice of storage options affects
the speed with which Adaptive Server referencesand updatesthefieldsin these
columns.

Column valuesfor arow typically arestored “in-row,” that is, consecutively on
the data pages allocated to a table. However, you can also store Java-SQL
columns in a separate “ off-row” location in the same way that text and image
dataitems are stored. The default value for Java-SQL columnsis off-row.

If aJava-SQL column is stored in-row:

» Objects stored in-row are processed more quickly than objects stored off-
row.

* Anobject stored in-row can occupy up to approximately 16K bytes,
depending on the page size of the database server and other variables. This
includes its entire serialization, not just the valuesinitsfields. A Java
object whose runtime representation is more than the 16K limit generates
an exception, and the command aborts.

If aJava-SQL columnisstored off-row, the columnissubject to therestrictions
that apply to text and image columns:

* Objects stored off-row are processed more slowly than objects stored in-
row.

* Anobject stored off-row can be of any size—subject to normal limits on
text and image columns.

* An off-row column cannot be referenced in a check constraint.

Chapter 3 Using Java Classes in SQL

Similarly, do not reference atable that contains an off-row columnin a
check constraint. Adaptive Server allows you to include the check
constraint when you create or alter the table, but issuesawarning message
at compile time and ignores the constraint at runtime.

* You cannot include an off-row column in the column list of aselect query
with select distinct.

e You cannot specify an off-row column in a comparison operator, in a
predicate, or in agroup by clause.

Partial syntax for create table with thein row/off row option is:

create table...column_name datatype
[default {constant_expression | user | null}]
{[{identity | null | not null}]
[off row | [in row [(size_in_bytes)]]...
size in_bytes specifies the maximum size of the in-row column. The value can
be aslarge as 16K bytes. The default value is 255 bytes.

The maximum in-row column size you enter in create table must include the
column’s entire serialization, not just the valuesin its fields, plus minimum
valuesfor overhead.

To determine an appropriate column size that includes overhead and
serialization values, use the datalength system function. datalength allows you
to determine the actual size of arepresentative object you intend to storein the
column.

For example:
select datalength (new class name(...))
where class nameisan installed Java-SQL class.

Partial syntax for alter table is:

alter table...{add column_name datatype
[default {constant_expression | user | null}]
{identity | null} [off row | [in row]...

Note You cannot change the column size of an in-row column using alter
column in this Adaptive Server release.

27

Using Java classes as datatypes

Altering partitioned tables

If atable containing Java columnsis partitioned, you cannot alter the table
without first dropping the partitions. To change the table schema:

1 Remove the partitions.
2 Usethealter table command.

3 Repartition the table.

Selecting, inserting, updating, and deleting Java objects

After you specify Java-SQL columns, the values that you assign to those data
items must be Javainstances. Such instances are generated initially by callsto
Java constructors using the new operator. You can generate Javainstances for
both columns and variables.

Constructor methods are pseudo instance methods. They create instances.
Constructor methods have the same name as the class, and have no declared
datatype. If you do not include a constructor method in your class definition, a
default method is provided by the Java base class object. You can supply more
than one constructor for each class, with different numbers and types of
arguments. When a constructor isinvoked, the one with the proper number and
type of argumentsis used.

In the following example, Javainstances are generated for both columns and
variables;

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line

select @A = new Address()

select @AA = new Address('123 Main Street', '99123"')

select @A2 = new Address2Line()

select @AA2 = new Address2Line('987 Front Street',
'Unit 2', '99543"')

insert into emps values ('John Doe', new Address(),
new Address2Line())
insert into emps values ('Bob Smith',
new Address('432 ElmStreet', ‘'99654'),
new Address2Line ('PO Box 99', 'attn: Bob Smith', '99678'))

Values assigned to Java-SQL columns and variables can then be assigned to
other Java-SQL columns and variables. For example:

28

Chapter 3 Using Java Classes in SQL

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line

select @A = home_addr, @A2 = mailing addr from emps
where name = 'John Doe'
insert into emps values ('George Baker', @A, @A2)

select @AA2 = @A2
update emps

set home addr = new Address('456 Shoreline Drive', '99321'),
mailing addr = @AA2
where name = 'Bob Smith'

You can also copy values of Java-SQL columns from one table to another. For

example:

create table trainees (
name char(30),
home addr Address,
mailing addr Address2Line null

)

insert into trainees

select * from emps
where name in ('Don Green', 'Bob Smith',
'George Baker')

n reference and update the fields of Java-SQL columns and of Java-SQL

variables with normal SQL qualification. To avoid ambiguities with the SQL
use of dotsto qualify names, use a double-angle (>>) to qualify Javafield and

method names when referencing them in SQL.

declare @name varchar (100), @street varchar (100),
@streetLine2 varchar(100), @zip char(10), @A Address

select @A = new Address()
select @A>>street = '789 Oak Lane'
select @street = @A>>street

select @street = home add>>street, @zip = home add>>zip from emps
where name = 'Bob Smith'

select @name = name from emps
where home addr>>street= '456 Shoreline Drive'

update emps

set home_addr>>street = '457 Shoreline Drive',
home_addr>>zip = '99323"
where home addr>>street = '456 Shoreline Drive'

29

Invoking Java methods in SQL

Invoking Java methods in SQL

30

You can invoke Java methods in SQL by referencing them, with name
qualification, on instances for instance methods, and on either instances or
classes for static methods.

Instance methods are generally closely tied to the data encapsulated in a
particular instance of their class. Static (class) methods affect the whole class,
not aparticular instance of the class. Static methods often apply to objects and
values from awide range of classes.

Once you have installed a static method, it is ready for use. A class that
contains a static method for use as a function must be public, but it does not
need to be serializable.

One of the primary benefits of using Javawith Adaptive Server isthat you can
use static methods that return a value to the caller as user-defined functions
(UDFs).

You can use a Java static method as a UDF in a stored procedure, atrigger, a
where clause, or anywhere that you can use a built-in SQL function.

Javamethodsinvoked directly in SQL as UDFsare subject to these limitations:

» If the Java method accesses the database through JDBC, result-set values
are available only to the Java method, not to the client application.

» Output parameters are not supported. A method can manipul ate the dataiit
receives from a JDBC connection, but the only valueit can return to its
caler isasinglereturn value declared as part of its definition.

» Cross-databaseinvocationsof static methods are supported only if you use
aclass instance as a column value.

Permission to execute any UDF is granted implicitly to public. If the UDF
performs SQL queries via JDBC, permission to access the datais checked
against the invoker of the UDF. Thus, if user A invokes a UDF that accesses
tablet1, user A must have select permission on t1 or the query will fail. For a
more detailed discussion of security models for Java method invocations, see
“Security and permissions’ on page 77.

To use Java static methods to return result sets and output parameters, you must
enclose the methods in SQL wrappers and invoke them as SQL J stored
procedures or functions. See “Invoking Java methods in Adaptive Server” on
page 78 for acomparison of thewaysyou can invoke Javamethodsin Adaptive
Server.

Chapter 3 Using Java Classes in SQL

Sample methods

The sample Address and Address2Line classes have instance methods named
toString(), and the sample Misc class has static methods named
stripLeadingBlanks(), getNumber(), and getStreet(). You can invoke value
methods as functions in a value expression.

declare @name varchar (100)
declare @street varchar (100)
declare @streetnum int
declare @A2 Address2Line

select @name = Misc.stripLeadingBlanks (name),
@street = Misc.stripLeadingBlanks (home addr>>street),
@streetnum = Misc.getNumber (home addr>>street),
@A2 = mailing addr
from emps
where home addr>>toString() like '%Shoreline%'

For information about void methods (methods with no returned value) see
“Type and void methods’ on page 43.

Exceptions in Java-SQL methods

entheinvocation of aJava-SQL method completeswith unhandled exceptions,
a SQL exception is raised, and this error message displays:

Unhandled Java method exception

The message text for the exception consists of the name of the Java class that
raised the exception, followed by the character string (if any) supplied when
the Java exception was thrown.

Representing Java instances

Non-Java clients such as isql cannot receive serialized Java objects from the
server. To allow you to view and use the abject, Adaptive Server must convert
the object to a viewable representation.

31

Assignment properties of Java-SQL data items

To use an actual string value, Adaptive Server must invoke a method that
translates the object into a char or varchar value. The toString() method in the
Address classis an example of such amethod. You must create your own
version of the toString() method so that you can work with the viewable
representation of the object.

Note The toString() method in the Java API does not convert the object to a
viewable representation. The toString() method you create overrides the
toString() method in the Java API.

When you use a toString() method, Adaptive Server imposes alimit on the
number of bytes returned. Adaptive Server truncates the printable
representation of the object to the value of the @ @stringsize global variable.
The default value of @@stringsize is 50; you can change this value using the
set stringsize command. For example:

set stringsize 300

The display software on your computer may truncate the data item further so
that it fits on the screen without wrapping.

If you include atoString() or similar method in each class, you can return the
value of the object’s toString() method in either of two ways:

* You can select a particular field in the Java-SQL column, which
automatically invokes toString():

select home_ add>>street from emps

* You can select the column and the toString() method, which listsin one
string all of the field values in the column:

select home addr>>toString() from emps

Assignment properties of Java-SQL data items

32

Thevalues assigned to Java-SQL dataitemsare derived ultimately from values
constructed by Java-SQL methods in the Java VM. However, the logical
representation of Java-SQL variables, parameters, and resultsis different from
the logical representation of Java-SQL columns.

Chapter 3 Using Java Classes in SQL

Java-SQL columns, which are persistent, are Javaserialized streamsstored
in the containing row of the table. They are stored values containing
representations of Javainstances.

Java-SQL variables, parameters, and function results are transient. They
do not actually contain Java-SQL instances, but instead contain references
to Javainstances contained in the Java VM.

These differences in representation give rise to differences in assignment
properties as these examplesillustrate.

The Address constructor method with the new operator is evaluated in the
Java VM. It constructs an Address instance and returns areference toit.
That reference is assigned as the value of Java-SQL variable @A:

declare @A Address, @AA Address, @A2 Address2Line,
@AA2 Address2Line
select @A = new Address ('432 Post Lane', '99444')

Variable @A contains areference to a Javainstance in the JavaVM. That
reference is copied into variable @AA. Variables @A and @AA now
reference the same instance.

select @AA=@A

This assignment modifies the zip field of the Address referenced by @A.
Thisis the same Address instance that is referenced by @AA. Therefore,
the values of @A.zip and @AA.zip are now both '99222'.

select @A>>zip='99222"

The Address constructor method with the new operator constructs an
Address instance and returns areferenceto it. However, since thetarget is
aJava-SQL column, the SQL system serializes the Address instance
denoted by that reference, and copiesthe serialized valueinto the new row
of the emps table.

insert into emps
values ('Don Green', new Address('234 Stone
Road', '99777'), new Address2Line())

The Address2Line constructor method operates the same way as the
Address method, except that it returns a default instance rather than an
instance with specified parameter values. The action taken is, however, the
same as for the Address instance. The SQL system serializes the default
Address2Line instance, and storesthe serialized valueinto the new row of
the emps table.

33

Assignment properties of Java-SQL data items

34

insert into emps

insert into emps

Theinsert statement specifies no value for the mailing_addr column, so that
column will be set to null, in the same manner as any other column whose
value is not specified in aninsert. Thisnull value is generated entirely in
SQL, and initialization of the mailing_addr column does not involve the
JavaVM at all.

(name, home addr) values ('Frank Lee', @A)

Theinsert statement specifiesthat the value of the home_addr columnisto
be taken from the Java-SQL variable @A. That variable contains a
referenceto an Address instancein the JavaVM. SincethetargetisaJava
SQL column, the SQL system serializes the Address instance denoted by
@A, and copies the serialized value into the new row of the emps table.

This statement inserts anew emps row for 'Bob Brown.' The value of the
home_addr column is taken from the SQL variable @A. Itisaso a
serialization of the Java instance referenced by @A.

(name, home addr) values ('Bob Brown', @A)

This update statement sets the zip field of the home_addr column of the
‘Frank Le€' row to ‘99777." This has no effect on the zip field in the ‘Bob
Brown’ row, whichis till *99444.

update emps
set home_add>>zip = '99777"'
where name = 'Frank Lee'

The Java-SQL column home_addr contains a serialized representation of
thevalue of an Address instance. The SQL system invokesthe JavaVM to
deserialize that representation as a Javainstance in the Java VM, and
return areference to the new deserialized copy. That referenceis assigned
to @AA. The deserialized Address instance that is referenced by @AA is
entirely independent of both the column value and the instance referenced
by @A.

select @AA = home_addr from emps where name = 'Frank Lee'

This assignment modifies the zip field of the Address instance referenced
by @A. Thisinstanceisacopy of thehome_addr column of the'Frank Lee'
row, but isindependent of that column value. The assignment therefore
does not modify the zip field of the home_addr column of the 'Frank Lee
row.

select @A>>zip = '95678'

Chapter 3 Using Java Classes in SQL

Datatype mapping between Java and SQL fields

When you transfer datain either direction between the JavaVVM and Adaptive
Server, you must take into account that the datatypes of the dataitems are
different in each system. Adaptive Server automatically maps SQL itemsto
Javaitems and vice versa according to the correspondencetablesin “ Datatype
mapping between Java and SQL” on page 217.

Thus, SQL type char translates to Java type String, the SQL type binary
trangdlates to the Java type byte[], and so on.

» For the datatype correspondences from SQL to Java, char, varchar, and
varbinary types of any length correspond to Java String or byte[] datatypes,
as appropriate.

« For the datatype correspondences from Javato SQL:

e The Java String and byte[] datatypes correspond to SQL varchar and
varbinary, where the maximum length value of 16K bytesis defined
by Adaptive Server.

e The JavaBigDecimal datatype corresponds to SQL
numeric(precision,scale), where precision and scal e are defined by the
user.

In the emps table, the maximum value for the Address and Address2Line
classes, street, zip, and line2 fields is 255 bytes (the default value). The Java
datatype of these classes isjava.String, and they are treated in SQL as
varchar(255).

An expression whose datatype is a Java object is converted to the
corresponding SQL datatype only when the expression isused in a SQL
context. For example, if the field home_addr>>street for employee ‘ Smith’ is
260 characters, and begins ‘6789 Main Street ...

select Misc.getStreet (home addr>>street) from emps where name='Smith'

The expression in the select list passes the 260-character value of
home_addr>>street to the getStreet() method (without truncating it to 255
characters). The getStreet() method then returns the 255-character string
beginning ‘Main Street....". That 255-character string isnow an element of the
SQL select list, and is, therefore, converted to the SQL datatype and (if need
be) truncated to 255 characters.

35

Character sets for data and identifiers

Character sets for data and identifiers

The character set for both Java source code and for Java String datais Unicode.
Fields of Java-SQL classes can contain Unicode data.

Note Javaidentifiersused in the fully qualified names of visible classes or in
the names of visible members can use only Latin characters and Arabic
numerals.

Subtypes in Java-SQL data

Class subtypes allow you to use subtype substitution and method override,
which are characteristics of Java. A conversion from aclass to one of its
superclassesis awidening conversion; a conversion from a classto one of its
subclasses is a narrowing conversion.

* Widening conversions are performed implicitly with normal assignments
and comparisons. They are always successful, since every subclass
instance is also an instance of the superclass.

* Narrowing conversions must be specified with explicit convert
expressions. A narrowing conversion is successful only if the superclass
instance is an instance of the subclass, or a subclass of the subclass.
Otherwise, an exception occurs.

Widening conversions

36

You do not need to use the convert function to specify awidening conversion.
For example, since the Address2Line classis a subclass of the Address class,
you can assign Address2Line valuesto Address dataitems. In the emps table,
the home_addr column is an Address datatype and the mailing_addr column is
an Address2Line datatype:

update emps
set home addr = mailing addr
where home addr is null

For the rows fulfilling the where clause, the home_addr column contains an
Address2Line, even though the declared type of home_addr is Address.

Chapter 3 Using Java Classes in SQL

Such an assignment implicitly treats an instance of a class as an instance of a
superclass of that class. The runtime instances of the subclass retain their
subclass datatypes and associated data.

Narrowing conversions

update

update

update

You must use the convert function to convert an instance of aclass to an
instance of a subclass of the class. For example:

emps
set mailing addr = convert (Address2Line, home_ addr)
where mailing addr is null

The narrowing conversionsin the update statement cause an exception if they
are applied to any home_addr column that contains an Address instancethat is
not an Address2Line. You can avoid such exceptions by including a condition
in the where clause:

emps

set mailing addr = convert (Address2Line, home_ addr)
where mailing addr is null

and home addr>>getClass()>>toString() = 'Address2Line'

The expression “home_addr>>getClass()>>toString()” invokes getClass()
and toString() methods of the Java Object class. The Object classisimplicitly a
superclass of all classes, so the methods defined for it are available for al
classes.

You can also use a case expression:

emps
set mailing addr =
case
when home addrs>>getClass()>>toString()
='Address2Line’
then convert (Address2Line, home addr)
else null
end
where mailing addr is null

37

The treatment of nulls in Java-SQL data

Runtime versus compile-time datatypes

Neither widening nor narrowing conversions modify the actual instance value
or itsruntime datatype; they simply specify the classto be used for the compile-
time type. Thus, when you store Address2Line values from the mailing_addr
columninto the home_address column, those values still havethe runtimetype
of Address2Line.

For example, the Address class and the Address2Line subclass both have the
method toString(), which returns a String form of the complete address data.

select name, home addr>>toString() from emps

)

where home addr>>toString() not like 'S%Line2=[]'

For each row of emps, the declared type of the home_addr column is Address,
but the runtime type of the home_addr valueis either Address or Address2Line,
depending on the effect of the previous update statement. For rows in which
the runtime value of the home_addr column is an Address, the toString()
method of the Address classisinvoked, and for rows in which the runtime
value of the home_addr column is Address2Line, the toString() method of the
Address2Line subclassisinvoked.

See “Null values when using the SQL convert function” on page 41 for a
description of null values for widening and narrowing conversions.

The treatment of nulls in Java-SQL data

This section discusses the use of nullsin Java-SQL dataitems.

References to fields and methods of null instances

38

If the value of the instance specified in afield referenceis null, then the field
referenceisnull. Similarly, if the value of the instance specified in an instance
method invocation is null, then the result of the invocation is null.

Java has different rules for the effect of referencing afield or method of anull
instance. In Java, if you attempt to reference afield of anull instance, an
exception is raised.

For example, suppose that the emps table has the following rows:

insert into emps (name, home addr)

Chapter 3 Using Java Classes in SQL

values ("Al Adams",
new Address ("123 Main", "95321"))

insert into emps (name, home_ addr)
values ("Bob Baker",
new Address ("456 Side", "95123"))

insert into emps (name, home addr)
values ("Carl Carter", null)

Consider the following select:

select name, home addr>>zip from emps
where home addr>>zip in ('95123', '95125', '95128"')

If the Javarule were used for the referencesto “home_addr>>zip,” then those
references would cause an exception for the “ Carl Carter” row, whose
“home_addr” columnisnull. To avoid such an exception, you would need to
write such aselect as follows:

select name,
case when home_addr is not null then home_addr>>zip
else null end

from emps
where case when home addr is not null
then home addr>>zip

else
null end

in ('95123', '95125', '95128")

The SQL convention is therefore used for references to fields and methods of
null instances: if theinstanceisnull, then any field or method referenceisnull.
The effect of this SQL ruleis to make the above case statement implicit.

However, this SQL rulefor field references with null instances only appliesto
field references in source (right-side) contexts, not to field references that are
targets (left-side) of assignments or set clauses. For example:

update emps
set home addr>>zip D '99123'
where name D 'Charles Green'

Thiswhere clauseisobvioudly true for the “ Charles Green” row, so the update
statement triesto perform the set clause. Thisraises an exception, because you
cannot assign avalueto afield of anull instance as the null instance has no
field to which a value can be assigned. Thus, field references to fields of null
instances are valid and return the null value in right-side contexts, and cause
exceptions in left-side contexts.

39

The treatment of nulls in Java-SQL data

The same considerations apply to invocations of methods of null instances,
and the sameruleis applied. For example, if we modify the previous example
and invoke the toString() method of the home_addr column;

select name, home addr>>toString()from emps
where home addr>>toString() D
'StreetD234 Stone Road ZIPD 99777'

If the value of the instance specified in an instance method invocation is null,
then the result of the invocation is null. Hence, the select statement is valid
here, whereas it raises an exception in Java.

Null values as arguments to Java-SQL methods

The outcome of passing null as aparameter isindependent of the actions of the
method for which it is an argument, but instead depends on the ability of the
return datatype to deliver anull value.

You cannot passthe null value asaparameter to a Javascal ar type method; Java
scalar types are always non-nullable. However, Java object types can accept
null values.

For the following Java-SQL class:

public class General implements java.io.Serializable ({
public static int identityl (int I) {return I;}
public static java.lang.Integer identity2
(java.lang.Integer I) {return I;}
public static Address identity3 (Address A) {return A;}

declare @I int
declare @A Address;

select @I
select @I =
select @A =

40

General
General

Consider these cdlls:

.identityl (@I)
.identity2 (new java.lang.Integer (@I))
General.

identity3 (@A)

The values of both variable @I and variable @A are null, since values have not
been assigned to them.

e Thecal of theidentity1() method raises an exception. The datatype of the
parameter @I of identity1() isthe Javaint type, which is scalar and has no
null state. An attempt to pass a null valued argument to identity1() raises
an exception.

Chapter 3 Using Java Classes in SQL

Thecall of theidentity2() method succeeds. The datatype of the parameter
of identity2() is the Java class java.lang.Integer, and the new expression
creates an instance of java.lang.Integer that is set to the value of variable
@l.

The call of the identity3() method succeeds.

A successful call of identity1() never returns anull result because the return
type has no null state. A null cannot be passed directly because the method
resolution fails without parameter type information.

Successful calls of identity2() and identity3() can return null results.

Null values when using the SQL convert function

You use the convert function to convert a Java object of one classto a Java
object of a superclass or subclass of that class.

Asshownin “Subtypesin Java-SQL data” on page 36, the home_addr column
of the emps table can contain values of both the Address class and the
Address2Line class. In this example:

select name, home addr>>street, convert (Address2Line, home addr)s>>line2,
home addr>>zip from emps

the expression “ convert(Address2Line, home _addr)” contains a datatype
(Address2Line) and an expression (home_addr). At compile-time, the
expression (home_addr) must be a subtype or supertype of the class
(Address2Line). At runtime, the action of this convert invocation depends on
whether the runtime type of the expression’s value is a class, subclass, or
superclass:

If the runtime value of the expression (home_addr) is the specified class
(Address2Line) or one of its subclasses, the value of the expression is
returned, with the specified datatype (Address2Line).

If the runtime value of the expression (home_addr) is a superclass of the
specified class (Address), then anull is returned.

Adaptive Server evaluates the select statement for each row of the result. For
each row:

If the value of the home_addr column is an Address2Line, then convert
returnsthat value, and thefield reference extractstheline2 field. If convert
returns null, then the field reference itself is null.

When aconvert returns null, then thefield referenceitself evaluatesto null.

41

Java-SQL string data

Hence, the results of the select shows the line2 value for those rows whose
home_addr column is an Address2Line and a null for those rows whose
home_addr column is an Address. As described in “The treatment of nullsin
Java-SQL data” on page 38, the select also shows anull line2 value for those
rows in which the home_addr column is null.

Java-SQL string data

In Java-SQL columns, fields of type String are stored as Unicode.

When a Java-SQL String field is assigned to a SQL dataitem whose typeis
char, varchar, nchar, nvarchar, or text, the Unicode data is converted to the
character set of the SQL system. Conversion errors are specified by the set
char_convert options.

When a SQL dataitem whosetypeischar, varchar, nchar, or text isassigned to
aJava-SQL string field that is stored as Unicode, the character dataiis
converted to Unicode. Undefined codepoints in such data cause conversion
errors.

Zero-length strings

42

In Transact-SQL, a zero-length character string is treated as a null value, and
the empty string () istreated as a single space.

To be consistent with Transact-SQL, when a Java-SQL String value whose
lengthiszeroisassignedto aSQL dataitem whosetypeischar, varchar, nchar,
nvarchar, Or text, the Java-SQL String value is replaced with a single space.

For example:

1> declare @s varchar (20)

2> select @s = new java.lang.String()
3> select @s, char_length(@s)

4> go

(1 row affected)

1

Otherwise, the zero-length value would be treated in SQL as a SQL null, and
when assigned to a Java-SQL String, the Java-SQL String would be a Javanull.

Chapter 3 Using Java Classes in SQL

Type and void methods

Java methods (both instance and static) are either type methods or void
methods. In general, type methods return a value with a result type, and void
methods perform some action(s) and return nothing.

For example, in the Address class:
e ThetoString() method is atype method whose type is String.
¢ TheremoveLeadingBlanks() method is avoid method.

e The Address constructor method is a type method whose typeis the
Address class.

Youinvoketype methods asfunctions and use the new keyword when invoking
a constructor method:

insert into emps
values ('Don Green', new Address('234 Stone Road', '99777'),
new Address2Line())

select name, home addr>>toString() from emps
where home addr>>toString() 1like ‘%Baker%’

The removeLeadingBlanks() method of the Address classis avoid instance
method that modifies the street and zip fields of a given instance. You can
invoke removeLeadingBlanks() for the home_addr column of each row of the
emps table. For example:

update emps
set home addr =
home_addr>>removeLeadingBlanks()

removeLeadingBlanks() removes the leading blanks from the street and zip
fields of the home_addr column. The Transact-SQL update statement does not
provide a framework or syntax for such an action. It simply replaces column
values.

Java void instance methods

To usethe“ update-in-place” actions of Javavoid instance methodsin the SQL
system, Javain Adaptive Server treats acall of a Javavoid instance method as
follows:

For avoid instance method M() of an instance ClI of aclass C, written
“CLM(.)":

43

Type and void methods

In SQL, the call istreated as atype method call. The result typeis
implicitly class C, and the result value is areference to CI. That reference
identifies a copy of the instance Cl after the actions of the void instance
method call.

In Java, this call isavoid method call, which performsits actions and
returns no value.

For example, you can invoke the removeLeadingBlanks() method for the
home_addr column of selected rows of the emps table as follows;

update emps

set home addr =

home addr>>removeLeadingBlanks()

where home addr>>removeLeadingBlanks()>>street like “123%”

1

In the where clause, “home_addr>>removel eadingBlanks()" callsthe
removeLeadingBlanks() method for the home_addr column of arow of the
emps table. removeLeadingBlanks() strips the leading blanks from the
street and zip fields of a copy of the column. The SQL system then returns
areference to the modified copy of the home_addr column. The
subsequent field reference:

home addr>>removelLeadingBlanks()>>street

returnsthe street field that hasthe leading blanks removed. Thereferences
to home_addr in the where clause are operating on a copy of the column.
This evaluation of the where clause does not modify the home_addr
column.

The update statement performs the set clause for each row of emps in
which the where clauseistrue.

On the right-side of the set clause, the invocation of
“home_addr>>removel eadingBlanks()" is performed as it was for the
where clause: removeleadingBlank() strips the leading blanks from street
and zip fields of that copy. The SQL system then returns areference to the
modified copy of the home_addr column.

The Address instance denoted by the result of the right side of the set
clauseis serialized and copied into the column specified on the | eft-side of
the set clause: the result of the expression on theright side of the set clause
isacopy of the home_addr column in which the leading blanks have been
removed from the street and zip fields. The modified copy isthen assigned
back to the home_addr column as the new value of that column.

The expressions of the right and left side of the set clause are independent, as
isnormal for the update statement.

44

Chapter 3 Using Java Classes in SQL

Thefollowing update statement shows an invocation of avoidinstance method
of the mailing_addr column on theright side of the set clause being assigned to
the home_address column on the | eft side.

update emps
set home addr = mailing addr>>removeLeadingBlanks()
where ...

In this set clause, the void method removeLeadingBlanks() of the mailing_addr
column yields areference to amodified copy of the Address2Line instancein
the mailing_addr column. The instance denoted by that reference isthen
serialized and assigned to the home_addr column. This action updates the
home_addr column; it has no effect on the mailing_addr column.

Java void static methods

You cannot invoke avoid static method using asimple SQL execute command.
Rather, you must place the invocation of the void static method in a select
statement.

For example, suppose that a Java class C has a void static method M(...), and
assume that M() performs an action you want to invoke in SQL. For example,
M() can use JDBC callsto perform a series of SQL statements that have no
return values, such as create or drop, that would be appropriate for avoid
method.

You must invoke the void static method in a select command, such as:
select C.M(...)

To allow void static methods to be invoked using a select, void static methods
aretreated in SQL as returning a value of datatype int with a value of null.

Equality and ordering operations

You can use equality and ordering operatorswhen you use Javain the database.
You cannot:

* Reference Java-SQL dataitemsin ordering operations.

* Reference Java-SQL dataitemsin equality operationsif they are stored in
an off-row column.

45

Evaluation order and Java method calls

Use the order by clause, which requires that you determine the sort order.

Make direct comparisons using the “>", “<”, “<=" or “>=" operator.

These equality operations are allowed for in-row columns:

Use of the distinct keyword, which is defined in terms of equality of rows,
including Java-SQL columns.

Direct comparisons using the “=" and “!=" operators.

Use of the union operator (not union all), which eliminates duplicates, and
requires the same kind of comparisons as the distinct clause.

Use of the group by clause, which partitions the rows into sets with equal
values of the grouping column.

Evaluation order and Java method calls

Adaptive Server does not have a defined order for eval uating operands of
comparisons and other operations. Instead, Adaptive Server evaluates each
guery and chooses an evaluation order based on the most rapid rate of
execution.

This section describes how different eval uation orders affect the outcomewhen
you pass columns or variables and parameters as arguments. The examplesin
this section use the following Java-SQL class:

public class Utility implements java.io.Serializable ({
public static int F (Address A) {
if (A.zip.length() > 5) return 0;
else {A.zip = A.zip + "-1234"; return 1;}

}

public static int G (Address A) {
if (A.zip.length() > 5) return 0;
else {A.zip = A.zip + "-1234"; return 1;}

46

Chapter 3 Using Java Classes in SQL

Columns

In general, avoid invoking in the same SQL statement multiple methods on the
same Java-SQL object. If at least one of them modifies the object, the order of
evaluation can affect the outcome.

For example, in this example:

select * from emp E
where Utility.F(E.home addr) > Utility.F(E.home addr)

the where clause passes the same home_addr column in two different method
invocations. Consider the evaluation of the where clause for arow whose
home_addr column has a 5-character zip, such as*95123.”

Adaptive Server can initially evaluate either the left or right side of the
comparison. After the first evaluation completes, the second is processed.
Because it executes faster this way, Adaptive Server may let the second
invocation see the modifications of the argument made by the first invocation.

In the example, the first invocation chosen by Adaptive Server returns 1, and
the second returns O. If the left operand is evaluated first, the comparison is
1>0, and the where clauseistrue; if the right operand is evaluated first, the
comparison is 0>1, and the where clause isfalse.

Variables and parameters

Similarly, the order of evaluation can affect the outcome when passing
variables and parameters as arguments.

Consider the following statements:

declare @A Address
declare @Order varchar(20)

select @A = new Address('95444', '123 Port Avenue')
select case when Utility.F(@A)>Utility.G (@A)
then ‘Left’ else ‘Right’ end
select @Order = case when utility.F(@A) > utility.G (@A)
then 'Left' else 'Right' end

Thenew Address hasafive-character zip codefield. When the case expression
is evaluated, depending on whether the left or right operand of the comparison
isevaluated first, the comparisoniseither 1>0 or 0>1, and the @Order variable
issetto ‘Left’ or ‘Right’ accordingly.

47

Static variables in Java-SQL classes

Asfor column arguments, the expression value depends on the evaluation
order. Depending on whether the left or right operand of the comparisonis
evaluated first, the resulting value of the zip field of the Address instance
referenced by @A is either “95444-4321" or “95444-1234."

Static variables in Java-SQL classes

48

A Javavariablethat is declared static is associated with the Java class, rather
than with each instance of the class. Thevariableisallocated oncefor the entire
class.

For example, you might include a static variable in the Address class that
specifies the recommended limit on the length of the Street field:

public class Address implements java.io.Serializable ({

public static int recommendedLimit;
public String street;
public String zip;

//

}

You can specify that a static variable isfinal, which indicates that it is not
updatable:

public static final int recommendedLimit;
Otherwise, you can update the variable.

You reference a static variable of a Javaclassin SQL by qualifying the static
variable with an instance of the class. For example:

declare @a Address
select @a>>recommendedLimit

If you don't have an instance of the class, you can use the following technique:
select (convert (null, Address))s>recommendedLimit

The expression “(convert(null, Address))” convertsanull value to an Address
type; that is, it generates anull Address instance, which you can then qualify
with the static variable name. You cannot reference a static variable of aJava
classin SQL by qualifying the static variable with the class name. For example,
the following are both incorrect:

select Address.recommendedLimit

Chapter 3 Using Java Classes in SQL

select Address>>recommendedLimit

Values assigned to non-final static variables are accessible only within the
current session.

Java classes in multiple databases

Scope

You can store Java classes of the same name in different databases in the same
Adaptive Server system. This section describes how you can use these classes.

When you install aJavaclass or set of classes, it isinstalled in the current
database. When you dump or load a database, the Java-SQL classes that are
currently installed in that database are aways included—even if classes of the
same name exist in other databases in the Adaptive Server system.

You can install Java classes with the same name in different databases. These
synonymous classes can be:

¢ |dentica classes that have been instaled in different databases.

« Different classes that are intended to be mutually compatible. Thus, a
serialized value generated by either classis acceptable to the other.

« Different classes that are intended to be “upward” compatible. That is, a
serialized value generated by one of the classes should be acceptableto the
other, but not vice versa.

« Different classes that are intended to be mutually incompatible; for
example, a class named Sheet designed for supplies of paper, and other
classes named Sheet designed for supplies of linen.

Cross-database references

You can reference obj ects stored in table columnsin one database from another
database.

For example, assume the following configuration:

* TheAddress classisinstaled in db1 and db2.

49

Java classes in multiple databases

* Theemps table hasbeen created in both db1 with owner Smith, andindb2,
with owner Jones.

In these examples, the current database is db1. You caninvoke ajoin or a
method across databases. For example:

e Ajoin across databases might look like this:

declare @count int
select @count (*)
from db2.Jones.emps, dbl.Smith.emps
where db2.Jones.emps.home addr>>zip =
dbl.Smith.emps.home addr>>zip

» A method invocation across databases might look like this:

select db2.Jones.emps.home addr>>toString()
from db2.Jones.emps
where db2.Jones.emps.name = 'John Stone'

In these examples, instance values are not transferred. Fields and methods of
an instance contained in db2 are merely referenced by aroutinein dbl1. Thus,
for across-database joins and method invocations:

* dbl need not contain an Address class.

* If dbl does contain an Address class, it can have completely different
properties than the Address classin db2.

Inter-class transfers

50

You can assign an instance of a classin one database to an instance of a class
of the same name in another database. I nstances created by the classin the
source database are transferred into columns or variables whose declared type
isthe classin the current (target) database.

You can insert or update from atable in one database to a table in another
database. For example:

insert into dbl.Smith.emps select * from
db2.Jones.emps

update dbl.Smith.emps
set home addr = (select db2.Jones.emps.home addr
from db2.Jones.emps
where db2.Jones.emps.name =
dbl.Smith.emps.name)

Chapter 3 Using Java Classes in SQL

You can insert or update from a variable in one database to another database.
(The following fragment isin a stored procedure on db2.) For example:

declare @home_ addr Address

select @home addr = new Address('94608’, ‘222 Baker
Street’)

insert into dbl.Janes.emps (name, home addr)
values (‘Jone Stone’, @home addr)

In these examples, instance values are transferred between databases. You can:
* Transfer instances between two |ocal databases.

» Transfer instances between alocal database and a remote database.

e Transfer instances between a SQL client and an Adaptive Server.

* Replace classes using install and update statements or remove and update
statements.

Inan inter-classtransfer, the Javaserialization istransferred from the source to
the target.

Passing inter-class arguments

You can pass arguments between classes of the same name in different
databases.When passing inter-class arguments:

e A Java-SQL column is associated with the version of the specified Java
classin the database that contains the column.

A Java-SQL variable (in Transact-SQL) is associated with the version of
the specified Java class in the current database.

e A Java-SQL intermediateresult of class C isassociated with the version of
class C in the same database as the Java method that returned the result.

¢ When aJavainstance value JI is assigned to atarget variable or column,
or passed to a Java method, JI is converted from its associated classto the
class associated with the receiving target or method.

Temporary and work databases

All rulesfor Java classes and databases al so apply to temporary databases and
the model database:

51

Java classes

e Java-SQL columns of temporary tables contain byte string serializations
of the Javainstances.

e A Java-SQL columnisassociated with the version of the specified classin
the temporary database.

You can install Java classes in atemporary database, but they persist only as
long as the temporary database persists.

The simplest way to provide Java classes for reference in temporary databases
istoinstall Javaclasses in the model database. They are then present in any
temporary database derived from the model.

Java classes

This section shows the simple Java classes that this chapter usesto illustrate
Javain Adaptive Server. You can also find these classes and their Java source
code in $SYBASE/$SYBASE_ASE/sample/JavaSgl. (UNIX) or
%SYBASEY0\Ase-12_5\sample\Javasgl (Windows NT).

Thisisthe Address class:

//

// Copyright (c) 1999

// Sybase, Inc

// Emeryville, CA 94608

// All Rights Reserved

//

/**

* A simple class for address data, to illustrate using a Java class
* as a SQL datatype.

*/

public class Address implements java.io.Serializable ({

/**
* The street data for the address.
* @serial A simple String wvalue.
*/

public String street;

/**
* The zipcode data for the address.
* @serial A simple String wvalue.

52

Chapter 3 Using Java Classes in SQL

*/
String zip;

/** A default constructor.

*/
public Address () {
street = "Unknown";
zip = "None'";
/** }
* A constructor with parameters
* @param S a string with the street information
* @param Z a string with the zipcode information
*/
public Address (String S, String Z) {
street = S;
zip = Z;
/** }

* A method to return a display of the address data.
* @returns a string with a display version of the address data.
*/
public String toString() {
return "Street= " + street + " ZIP= " + zip;
}

/**

* A void method to remove leading blanks.
* This method uses the static method

* <code>Misc.stripLeadingBlanks</codes>.

*/

public void removelLeadingBlanks()

street = Misc.stripLeadingBlanks (street) ;

zip = Misc.stripLeadingBlanks (street) ;

}
}

Thisisthe Address2Line class, which is a subclass of the Address class:

//

// Copyright (c) 1999

// Sybase, Inc

// Emeryville, CA 94608

// All Rights Reserved

//

/**

* A subclass of the Address class that adds a seond line of address data,
* <p>This is a simple subclass to illustrate using a Java subclass

53

Java classes

* as a SQL datatype.
*/

public class Address2Line extends Address implements java.io.Serializable

/**
* The second line of street data for the address.
* @serial a simple String value

*/
String line2;
/**
* A default constructor
*/
public Address2Line () {
street = "Unknown";
line2 = " ";
zip = "None";
/** }

* A constructor with parameters.

* @param S a string with the street information

* @param L2 a string with the second line of address data
* @param Z a string with the zipcode information

*/

public Address2Line (String S, String L2, String Z) {
street = S;
line2 = L2;
zip = Z;

}

/**

* A method to return a display of the address data
* @returns a string with a display version of the address data

*/

public String toString() {
return "Street= " + street + " Line2= " + line2 + " ZIP= " + zip;
}

/**

* A void method to remove leading blanks.
* This method uses the static method

* <code>Misc.stripLeadingBlanks</codes>.

*/

public void removelLeadingBlanks()
line2 = Misc.stripLeadingBlanks(line2) ;

54

{

Chapter 3 Using Java Classes in SQL

super.removeLeadingBlanks () ;

The Misc class contains sets of miscellaneous routines:
//
// Copyright (c) 1999
// Sybase, Inc
// Emeryville, CA 94608
// All Rights Reserved
//
/**
* A non-instantiable class with miscellaneous static methods
* that illustrate the use of Java methods in SQL.
*/

public class Misc{

/**
* The Misc class contains only static methods and cannot be instantiated.

*/

private Misc() { }
/**
* Removes leading blanks from a String
*/
public static String stripLeadingBlanks (String s) {
if (s == null) return null;
for (int scan=0; scan<s.length(); scan++)
if (!java.lang.Character.isWhitespace (s.charAt (scan)))
break;
} else if (scan == s.length()){
return "";

} else return s.substring(scan) ;

}
}

return "";
}**
* Extracts the street number from an address line.
* e.g., Misc.getNumber (" 123 Main Street") == 123
* Misc.getNumber (" Main Street") == 0
* Misc.getNumber ("") == 0
* Misc.getNumber (" 123 " == 123
* Misc.getNumber (" Main 123 ") == 0

55

Java classes

* @param s a string assumed to have address data
* @return a string with the extracted street number

*/
public static int getNumber (String s) {
String stripped = stripLeadingBlanks(s) ;
if (s==null) return -1;
for (int right=0; right < stripped.length(); right++) {
if (!java.lang.Character.isDigit (stripped.charAt (right))) {
break;
} else if (right==0) {
return 0;
} else {
return java.lang.Integer.parselnt
(stripped.substring (0, right), 10);
}
}
return -1;
}
/**
* Extract the "street" from an address line.
* e.g., Misc.getStreet (" 123 Main Street") == "Main Street"
* Misc.getStreet (" Main Street") == "Main Street"
* Misc.getStreet ("") == ""
* Misc.getStreet (" 123 " == m
* Misc.getStreet (" Main 123 ") == "Main 123"

* @param S a string assumed to have address data
* @return a string with the extracted street name

*/
public static String getStreet (String s) {
int left;
if (s==null) return null;
for (left=0; left<s.length(); left++){
if (java.lang.Character.isLetter (s.charAt (left))) {
break;
} else if (left == s.length()) {
return "";
} else {

return s.substring(left) ;
}
}

return "";

56

CHAPTER 4

Overview

Data Access Using JDBC

This chapter describes how to use Java Database Connectivity (JDBC) to

access data.
Topics Page
Overview 57
JDBC concepts and terminol ogy 58
Differences between client- and server-side JDBC 58
Permissions 59
Using JDBC to access data 60
Error handling in the native JDBC driver 67
The JDBCExamples class 69

JDBC provides a SQL interface for Java applications. If you want to

access relational datafrom Java, you must use JDBC calls.

You can use JDBC with the Adaptive Server SQL interface in either of

two ways:

« JDBContheclient—Javaclient applications can make JDBC callsto

Adaptive Server using the Sybase jConnect JDBC driver.

+ JDBC ontheserver —Javaclassesinstalled in the database can make
JDBC callsto the database using the JDBC driver native to Adaptive

Server.

The use of JDBC callsto perform SQL operationsis essentially the same

in both contexts.

This chapter provides sample classes and methods that describe how you
might perform SQL operations using JDBC. These classes and methods

are not intended to serve as templates, but as general guidelines.

57

JDBC concepts and terminology

JDBC concepts and terminology

JDBC isaJava APl and a standard part of the Java class libraries that
control basic functions for Java application development. The SQL
capabilities that JIDBC provides are similar to those of ODBC and
dynamic SQL.

The following sequence of eventsistypical of a JDBC application:
1 Create a Connection object — call the getConnection() static method

of the DriverManager class to create a Connection object. This
establishes a database connection.

2 Generate a Satement object — use the Connection object to generate a
Satement object.

3 PassaSQL statement to the Satement object —if the statement isa
query, this action returns a ResultSet object.

The ResultSet object contains the data returned from the SQL
statement, but providesit one row at atime (similar to the way a
cursor works).

4 Loop over the rows of the results set — call the next() method of the
ResultSet object to:

» Advancethe current row (the row in the result set that is being
exposed through the ResultSet object) by one row.

* Return aBoolean value (true/false) to indicate whether thereisa
row to advance to.

5 For each row, retrieve the values for columns in the ResultSet object
— use the getint(), getString(), or similar method to identify either the
name or position of the column.

Differences between client- and server-side JDBC

The difference between JDBC on the client and in the database server isin
how a connection is established with the database environment.

When you use client-side or server-side JDBC, you call the
Drivermanager.getConnection() method to establish a connection to the
server.

58

Chapter 4 Data Access Using JDBC

Permissions

For client-side JDBC, you use the Sybase jConnect JDBC driver, and
call the Drivermanager.getConnection() method with the identification
of the server. This establishes a connection to the designated server.

For server-side JDBC, you use the Adaptive Server native JDBC
driver, and call the Drivermanager.getConnection() method with one of
the following values:

* jdbc:default:connection
* jdbc:sybase:ase

e jdbc:default

e empty string

This establishes a connection to the current server. Only thefirst call
to the getConnection() method creates anew connection to the current
server. Subsequent calls return awrapper of that connection with all

connection properties unchanged.

You can write JDBC classes to run at both the client and the server by
using a conditional statement to set the URL.

Java execution permissions — like all Java classesin the database,
classes containing JDBC statements can be accessed by any user.
Thereis no equivalent of the grant execute statement that grants
permission to execute procedures in Java methods, and thereis no
need to qualify the name of aclass with the name of its owner.

QL execution permissions — Java classes are executed with the
permissions of the connection executing them. This behavior is
different from that of stored procedures, which execute with granted
permission by the database owner.

59

Using JDBC to access data

Using JDBC to access data

This section describes how you can use JDBC to perform the typical
operations of a SQL application. The examples are extracted from the
class JDBCExamples, which is described in “The JDBCExamples class’
on page 69 and in $SYBASE/$SYBASE_ASE/sample/JavaSgl (UNIX) or
%SYBASEY0\Ase-12_5\sample\Javasgl (Windows NT).

JDBCExamples illustrates the basics of a user interface and shows the
internal coding techniques for SQL operations.

Overview of the JDBCExamples class

The JDBCExamples class uses the Address class shown in “ Sample Java
classes’ on page 11. To execute these examples on your machine, install
the Address class on the server and includeit in the Java CLASSPATH of
the jConnect client.

You can call the methods of JDBCExamples from either ajConnect client
or Adaptive Server.

Note You must create or drop stored procedures from the jConnect client.
The Adaptive Server native driver does not support create procedure and
drop procedure statements.

JDBCExamples static methods perform the following SQL operations:

» Create and drop an example table, xmp:

create table xmp (id int, name varchar(50), home Address)

e Create and drop a sample stored procedure, inoutproc:

create procedure inoutproc @id int, @newname varchar (50),
@newhome Address, @oldname varchar (50) output, @oldhome
Address output as

select @oldname

= name, @oldhome = home from xmp

where id=@id
update xmp set name=@newname, home = @newhome
where id=@id

60

e Insert arow into the xmp table.

* Sdlect arow from the xmp table.

Chapter 4 Data Access Using JDBC

e Update arow of the xmp table.

e Call the stored procedure inoutproc, which has both input parameters
and output parameters of datatypes javalang.String and Address.

JDBCExamples operates only on the xmp table and inoutproc procedure.

The main() and serverMain() methods
JDBCExamples has two primary methods:
e main() —isinvoked from the command line of the jConnect client.

e serverMain() — performs the same actions as main(), but isinvoked
within Adaptive Server.

All actions of the IDBCExamplesclassareinvoked by calling one of these
methods, using a parameter to indicate the action to be performed.

Using main()

You can invoke the main() method from a jConnect command line as
follows:

java JDBCExamples
“server-name: port-number?user=user-name&password=password” action

You can determine server-name and port-number from your interfaces
file, using the dsedit tool . user-name and password are your user name and
password. If you omit &password=password, the default is the empty
password. Here are two exampl es:

“antibes:4000?user=smithé&password=1x2x3"
“antibes:4000?user=sa”

Make sure that you enclose the parameter in quotation marks.

The action parameter can be create table, create procedure, insert, select,
update, or call. It is caseinsensitive.

You can invoke JDBCExamples from ajConnect command line to create
the table xmp and the stored procedure inoutproc as follows:

java JDBCExamples “antibes:4000?user=sa” CreateTable
java JDBCExamples “antibes:4000?user=sa” CreateProc

You can invoke JDBCExamples for insert, select, update, and call actions
asfollows:

61

Using JDBC to access data

Using serverMain()

java JDBCExamples “antibes:4000?user=sa” insert
java JDBCExamples “antibes:4000?user=sa” update
java JDBCExamples “antibes:4000?user=sa” call

java JDBCExamples “antibes:4000?user=sa” select

These invocations display the message “ Action performed.”
To drop the table xmp and the stored procedure inoutproc, enter:

java JDBCExamples “antibes:4000?user=sa” droptable
java JDBCExamples “antibes:4000?user=sa” dropproc

Note Because the server-side JDBC driver does not support create
procedure Of drop procedure, create the table xmp and the example stored
procedure inoutproc with client-side calls of the main() method before
executing these examples. Refer to “Overview of the IDBCExamples
class’ on page 60.

After creating xmp and inoutproc, you can invoke the serverMain() method
asfollows:

select JDBCExamples.serverMain('insert')
go

select JDBCExamples.serverMain('select')
go

select JDBCExamples.serverMain ('update')
go

select JDBCExamples.serverMain('call')
go

Note Server-side calls of serverMain() do not require a server-name: port-
number parameter; Adaptive Server simply connectsto itself.

Obtaining a JDBC connection: the Connecter() method

62

Both main() and serverMain() call the connecter() method, which returns
aJDBC Connection object. The Connection object is the basis for all
subsequent SQL operations.

Chapter 4 Data Access Using JDBC

Both main() and serverMain() call connecter() with a parameter that
specifies the IDBC driver for the server- or client-side environment. The
returned Connection object is then passed as an argument to the other
methods of the JDBCExamples class. By isolating the connection actions
intheconnecter() method, JDBCExamples’ other methods areindependent
of their server- or client-side environment.

Routing the action to other methods: the doAction() method

The doAction() method routes the call to one of the other methods, based
on the action parameter.

doAction() has the Connection parameter, which it ssimply relaysto the
target method. It also has a parameter local e, which indicates whether the
call isserver- or client-side. Connection raises an exception if either create
procedure oOr drop procedure isinvoked in a server-side environment.

Executing imperative SQL operations: the doSQL() method

ThedoSQL() method performs SQL actionsthat require no input or output
parameters such as create table, create procedure, drop table, and drop
procedure.

doSQL() has two parameters. the Connection object and the SQL
statement it is to perform. doSQL() creates a JDBC Satement object and
uses it to execute the specified SQL statement.

Executing an update statement: the UpdateAction() method

The updateAction() method performs a Transact-SQL update statement.
The update actioniis:

String sql = "update xmp set name = ?, home = ? where id = ?";
It updates the name and home columns for all rows with agiven id value.

The update values for the name and home column, and the id value, are
specified by parameter markers (?). updateAction() supplies values for
these parameter markers after preparing the statement, but before
executing it. The values are specified by the JDBC setString(),
setObject(), and setint() methods with these parameters:

63

Using JDBC to access data

e Theordinal parameter marker to be substituted
* Thevaueto be substituted
For example:

pstmt.setString(l, name) ;
pstmt.setObject (2, home) ;
pstmt.setInt (3, id);

After making these substitutions, updateAction() executes the update
statement.

To simplify updateAction(), the substituted val uesin the example arefixed.
Normally, applications compute the substituted values or obtain them as
parameters.

Executing a select statement: the selectAction() method
The selectAction() method executes a Transact-SQL select Sstatement:
String sgl = "select name, home from xmp where id=?";

The where clause uses a parameter marker (?) for the row to be selected.
Using the JDBC setint() method, selectAction() supplies a value for the
parameter marker after preparing the SQL statement:

PreparedStatement pstmt =
con.prepareStatement (sql) ;
pstmt.setInt (1, id);

selectAction() then executes the select statement:

ResultSet rs = pstmt.executeQuery () ;

Note For SQL statements that return no results, use doSQL() and
updateAction(). They execute SQL statements with the executeUpdate()
method.

For SQL statements that do return results, use the executeQuery()
method, which returns a JDBC ResultSet object.

The ResultSet object is similar to a SQL cursor. Initialy, it is positioned
beforethefirst row of results. Each call of the next() method advancesthe
ResultSet object to the next row, until there are no more rows.

64

Chapter 4 Data Access Using JDBC

selectAction() requiresthat the ResultSet object have exactly onerow. The
selecter() method invokes the next method, and checksfor the case where
ResultSet has no rows or more than one row.

if (rs.next()) {
name = rs.getString(l);
home = (Address)rs.getObject(2);
if (rs.next()) {

throw new Exception("Error: Select returned multiple rows") ;
} else { // No action

}

} else { throw new Exception ("Error: Select returned no rows");

}

In the above code, the call of methods getString() and getObject() retrieve
the two columns of the first row of the result set. The expression
“(Address)rs.getObject(2)” retrieves the second column as a Java object,
and then coerces that object to the Address class. If the returned object is
not an Address, then an exception is raised.

selectAction() retrieves asingle row and checksfor the cases of no rowsor
more than one row. An application that processes amultiple row ResultSet
would simply loop on the calls of the next() method, and process each row
asfor asingle row.

Executing in batch mode If you want to execute a batch of SQL statements, make sure that you use
the execute() method. If you use executeQuery() for batch mode:

» If the batch operation does not return aresult set (contains no select
statements), the batch executes without error.

« If the batch operation returns one result set, all statements after the
statement that returns the result are ignored. If getxXxX() iscaled to
get an output parameter, the remaining statements execute and the
current result set is closed.

« |If thebatch operation returns more than one result set, an exceptionis
raised and the operation aborts.

Using execute() ensures that the complete batch executes for all cases.

Calling a SQL stored procedure: the callAction() method
The callAction() method calls the stored procedure inoutproc:

create proc inoutproc @id int, @newname varchar (50), @newhome Address,
@oldname varchar (50) output, @oldhome Address output as

65

Using JDBC to access data

select @oldname = name, @oldhome = home from xmp where id=@id
update xmp set name=@newname, home = @newhome where id=@id

This procedure has three input parameters (@id, @newname, and
@newhome) and two output parameters (@oldname and @ol dhome).
callAction() setsthe name and home columns of the row of table xmp with
the ID value of @id to the values @newname and @newhome, and returns
the former values of those columnsin the output parameters @oldname
and @oldhome.

Theinoutproc procedure illustrates how to supply input and output
parametersin a JDBC call.

callAction() executes the following call statement, which prepares the call
Statement:

CallableStatement cs = con.prepareCall("{call inoutproc (?, ?, ?, ?, ?)}");
All of the parameters of the call are specified as parameter markers (?).

callAction() supplies values for the input parameters using JDBC setint(),
setString(), and setObject() methods that were used in the doSQL(),
updatAction(), and selectAction() methods:

cs.setInt (1, id);
cs.setString (2, newName) ;
cs.setObject (3, newHome) ;

These set methods are not suitable for the output parameters. Before
executing the call statement, callAction() specifies the datatypes expected
of the output parameters using the JDBC registerOutParameter() method:

cs.registerOutParameter (4, java.sqgl.Types.VARCHAR) ;
cs.registerOutParameter (5, java.sql.Types.JAVA OBJECT) ;

callAction() then executes the call statement and obtains the output values
using the same getString() and getObject() methods that the selectAction()

method used:
int res = cs.executeUpdate() ;
String oldName = cs.getString(4);
Address oldHome = (Address)cs.getObject (5);

66

Chapter 4 Data Access Using JDBC

Error handling in the native JDBC driver

Sybase supports and implements all methods from the

java.sgl.SQLException and java.sql.SQLWarning classes. SQLException
provides information on database access errors. SQLWarning extends
SQLException and provides information on database access warnings.

Errorsraised by Adaptive Server are numbered according to severity.
Lower numbers are less severe; higher numbers are more severe. Errors
are grouped according to severity:

e Warnings (EX_INFO: severity 10) — are converted to SQLWarnings.
* Exceptions (severity 11 to18) — are converted to SQLExceptions.

« Fatal errors (severity 19 to 24) — are converted to fatal
SQL Exceptions.

SQL Exceptions can be raised through JDBC, Adaptive Server, or the
native JDBC driver. Raising a SQLException aborts the JDBC query that
caused the error. Subsequent system behavior differs depending on where
the error is caught:

e Iftheerror iscaught in Java—a*“try” block and subsequent “catch”
block processthe error.

Adaptive Server provides several extended JDBC driver-specific
SQLException error messages. All are EX_USER (severity 16) and
can aways be caught. There are no driver-specific SQLWarning

messages.

« Iftheerror isnot caught in Java —the Java VM returns control to
Adaptive Server, Adaptive Server catchesthe error, and an unhandled
SQLException error is raised.

The raiserror command is used typically with stored proceduresto
raisean error and to print auser-defined error message. When astored
procedure that calls the raiserror command is executed viaJDBC, the
error istreated as an internal error of severity EX_USER, and a
nonfatal SQLException is raised.

Note You cannot access extended error data using the raiserror
command; the with errordata clause is not implemented for
SQLEXxception.

If an error causes a transaction to abort, the outcome depends on the
transaction context in which the Java method is invoked:

67

Error handling in the native JDBC driver

» Ifthetransaction contains multiple statements—thetransaction aborts

and control returns to the server, which rolls back the entire

transaction. The JDBC driver ceases to process queries until control

returns from the server.

» If thetransaction contains a single statement — the transaction aborts,

the SQL statement it contains rolls back, and the JDBC driver

continues to process queries.

Thefollowing scenariosillustrate the different outcomes. Consider a Java

method jdbcTests.Errorexample() that contains these statements:

stmt .executeUpdate (“delete from parts where partno = 07);
stmt .executeQuery (“select 1/0");
stmt .executeUpdate (“delete from parts where partno = 10”);

68

A transaction containing multiple statements includes these SQL
commands:

begin transaction
delete from parts where partno = 8
select JDBCTests.Errorexample ()

In this case, these actions result from an aborted transaction:
e A divide-by-zero exceptionisraised in Q3.

e Changesfrom Q1 and Q2 are rolled back.

* Theentiretransaction aborts.

A transaction containing a single statement includes these SQL
commands:

set chained off
delete from parts where partno = 8
select JDBCTests.Errorexample ()

In this case:
* A divide-by-zero exceptionisraised in Q3.
» Changesfrom Q1 and Q2 are not rolled back

» Theexceptioniscaught in “catch” and “try” blocksin
JDBCTests.Errorexample.

Q2
Q3
Q4

Q1

Q1

» Thedeletion specified in Q4 does not execute becauseitishandledin

the same “try” and “catch” blocks as Q3.

» JDBC queries outside of the current “try” and “catch” blocks can be

executed.

Chapter 4 Data Access Using JDBC

The JDBCExamples class

// BAn example class illustrating the use of JDBC facilities
// with the Java in Adaptive Server feature.

// The methods of this class perform a range of SQL operations.
// These methods can be invoked either from a Java client,

// using the main method, or from the SQL server, using

// the internalMain method.

import java.sqgl.*; // JDBC
public class JDBCExamples {

{

The main() method

// The main method, to be called from a client-side command line
//
public static void main(String argsl|]) {
if (args.length!=2) ({
System.out.println("\n Usage: "
+ "java ExternalConnect server-name:port-number
action ") ;
System.out.println(" The action is connect, createtable,
" 4+ "createproc, drop, "
+ "insert, select, update, or call \n");
return;
}
try{
String server = args[0];
String action = args[1l].toLowerCase() ;
Connection con = connecter (server) ;
String workString = doAction(action, con, client);
System.out.println("\n" + workString + "\n");
} catch (Exception e)
System.out.println("\n Exception: ");
e.printStackTrace() ;

The internalMain() method

// A JDBCExamples method equivalent to 'main',

69

The JDBCExamples class

// to be called from SQL or Java in the server

public static String internalMain (String action) ({
try {
Connection con = connecter ("default") ;
String workString = doAction(action, con, server);
return workString;

} catch (Exception e) {
if (e.getMessage() .equals(null)) {
return "Exc: " + e.toString();
} else {
return "Exc - " + e.getMessage() ;

}

The connecter() method

// A JDBCExamples method to get a connection.
// It can be called from the server with argument 'default',
// or from a client, with an argument that is the server name.

public static Connection connecter (String server)
throws Exception, SQLException, ClassNotFoundException {

String forName="";
String url="";

if (server=="default") { // server connection to current server
forName = "sybase.asejdbc.ASEDriver";
url = "jdbc:default:connection";

} else if (server!="default") { //client connection to server
forName= "com.sybase.jdbc.SybDriver";
url = "jdbc:sybase:Tds:"+ server;

String user = "sa";
String password = "";

// Load the driver

Class. forName (forName) ;

// Get a connection

Connection con = DriverManager.getConnection (url,
user, password) ;

return con;

70

Chapter 4 Data Access Using JDBC

The doAction() method

// A JDBCExamples method to route to the 'action' to be performed

public static String doAction(String action, Connection con,
String locale)
throws Exception {

String createProcScript =

" create proc inoutproc @id int, @newname varchar(50),
@newhome Address, "

+ " @oldname varchar (50) output, @oldhome Address
output as "
+ " select @oldname = name, @oldhome = home from xmp

where id=@id "
+ " update xmp set name=@newname, home = @newhome
where id=@id ";
String createTableScript =
" create table xmp (id int, name varchar (50),
home Address)" ;

String dropTableScript = "drop table xmp ";
String dropProcScript = "drop proc inoutproc ";
String insertScript = "insert into xmp "
+ "values (1, 'Joe Smith', new Address('987 Shore',
'12345"'))";
String workString = "Action (" + action +) ;
if (action.equals("connect")) {
workString += "performed";
} else if (action.equals("createtable")) {
workString += doSQL(con, createTableScript);
} else if (action.equals("createproc")) {
if (locale.equals (server)) {

throw new exception (CreateProc cannot be performed
in the server) ;

} else {
workString += doSQL(con, createProcScript);

}

} else if (action.equals("droptable")) {
workString += doSQL (con, dropTableScript);
} else if (action.equals ("dropproc"))
if (locale.equals(server))

71

The JDBCExamples class

throw new exception (CreateProc cannot be performed
in the server) ;

} else {
workString += doSQL(con, dropProcScript);

}

} else if (action.equals("insert")) ({
workString += doSQL (con, insertScript);

} else if (action.equals("update")) ({
workString += updateAction (con) ;

} else if (action.equals("select")) ({
workString += selectAction (con) ;

} else if (action.equals("call")) {
workString += callAction(con) ;

} else { return "Invalid action: " + action ;

}

return workString;

The doSQL() method

// A JDBCExamples method to execute an SQL statement.

public static String doSQL (Connection con, String action)
throws Exception {

Statement stmt = con.createStatement () ;
int res = stmt.executeUpdate (action) ;
return "performed";

The updateAction() method

// A method that updates a certain row of the 'xmp' table.
// This method illustrates prepared statements and parameter markers.

public static String updateAction (Connection con)
throws Exception {

String sqgl = "update xmp set name = ?, home = ? where id = ?";
int id=1;

Address home = new Address("123 Main", "98765");

String name = "Sam Brown';

PreparedStatement pstmt = con.prepareStatement (sql) ;

72

Chapter 4 Data Access Using JDBC

pstmt.setString (1, name);
pstmt.setObject (2, home) ;
pstmt.setInt (3, id);

int res = pstmt.executeUpdate() ;
return "performed";

The selectAction() method

// A JDBCExamples method to retrieve a certain row

// of the 'xmp' table.

// This method illustrates prepared statements, parameter markers,
// and result sets.

public static String selectAction(Connection con)
throws Exception {

String sqgl = "select name, home from xmp where id=?";
int id=1;

Address home = null;

String name = "";

String street = "";

String zip = "";

PreparedStatement pstmt = con.prepareStatement (sql) ;
pstmt.setInt (1, id);

ResultSet rs = pstmt.executeQuery() ;

if (rs.next()) {
name = rs.getString(l);
home = (Address)rs.getObject(2);
if (rs.next()) {

throw new Exception("Error: Select returned
multiple rows") ;
} else { // No action

}

} else { throw new Exception("Error: Select returned no rows");

}

return "- Row with id=1: name("+ name +)
+ " street (" + home.street +) zip("+ home.zip +);

The callAction() method

// A JDBCExamples method to call a stored procedure,
// passing input and output parameters of datatype String

73

The JDBCExamples class

//
//
//

74

and Address.
This method illustrates callable statements,
and result sets.

public static String callAction (Connection con)

throws Exception {
CallableStatement cs = con.prepareCall("{call inoutproc
(2, 2, 2,2, 2)}");
int id = 1;
String newName = "Frank Farr";
Address newHome = new Address ("123 Farr Lane", "87654");
cs.setInt (1, id);
cs.setString (2, newName) ;
cs.setObject (3, newHome) ;
cs.registerOutParameter (4, java.sql.Types.VARCHAR) ;
cs.registerOutParameter (5, java.sql.Types.JAVA OBJECT) ;

int res = cs.executeUpdate() ;

String oldName = cs.getString(4);

Address oldHome = (Address)cs.getObject (5);

return "- 0ld values of row with id=1: name ("+oldName+)
street (" + oldHome.street + ") zip("+ oldHome.zip +);

parameter markers,

CHAPTER 5

Overview

SQLJ Functions and Stored
Procedures

This chapter describes how to wrap Java methods in SQL names and use

them as Adaptive Server functions and stored procedures.

Name Page
Overview 75
Invoking Java methods in Adaptive Server 78
General issues 76
Using Sybase Central to manage SQLJ functions and procedures 80
SQL J user-defined functions 81
SQLJ stored procedures 87
Viewing information about SQL J functions and procedures 97
Advanced topics 98
SQLJ and Sybase implementation: a comparison 102
SQLJExamples class 105

You can enclose Java static methods in SQL wrappers and use them

exactly as you would Transact-SQL stored procedures or built-in

functions. This functionality:

e AllowsJavamethodsto return output parametersand result setsto the

calling environment.

e Complieswith Part 1 of the ANSI SQL J standard specification.

« Allowsyou to take advantage of traditional SQL syntax, metadata,

and permission capabilities.

« Allowsyou to use existing Java methods as SQL J procedures and
functions on the server, on the client, and on any SQL J-compliant,

third-party database.

75

Overview

[ICreating a SQLJ stored procedure or function

Perform these steps to create and execute a SQL J stored procedure or
function.

1 Create and compile the Java method. Install the method classin the
database using the installjava utility.

Refer to Chapter 2, “Preparing for and Maintaining Javain the
Database,” for information on creating, compiling, and installing Java
methods in Adaptive Server.

2 Using the SQLJ create procedure Or create function statement, define
a SQL name for the method.

3 Execute the procedure or function. The examples in this chapter use
JDBC method calls or isgl. You can also execute the method using
Embedded SQL or ODBC.

Compliance with SQLJ Part 1 specifications

General issues

76

Adaptive Server SQL Jstored procedures and functions comply with SQLJ
Part 1 of the standard specifications for using Java with SQL. See
“Standards’ on page 4 for a description of the SQL J standards.

Adaptive Server supports most features described in the SQLJ Part 1
specification; however, there are some differences. Unsupported features
arelisted in Table 5-3 on page 103; partially supported features are listed
in Table 5-4 on page 103. Sybase-defined features—those not defined by
the standard but |eft to the implementation—are listed in Table 5-5 on
page 104.

In those instances where Sybase proprietary implementation differs from
the SQL Jspecifications, Sybase supportsthe SQL Jstandard. For example,
non-Java Sybase SQL stored procedures support two parameter modes: in
and inout. The SQL Jstandard supportsthree parameter modes: in, out, and
inout. The Sybase syntax for creating SQL J stored procedures supportsall
three parameter modes.

This section describes general issues and constraints that apply to SQLJ
functions and stored procedures.

CHAPTER 5 SQLJ Functions and Stored Procedures

e Only public static (class) methods can be referenced in a SQLJ
function or stored procedure.

« Datatype mapping is checked when the SQLJ routineis created.
During the execution of a SQLJ routine, datais passed from SQL to
Java and back to SQL. Any data conversions required during
execution must follow the rules for datatype mapping outlined in the
JDBC standard.

Refer to “Mapping Java and SQL datatypes’ on page 98 for a
discussion of datatype mapping and conversions for SQL J routines.

e |f amethod referenced by a SQLJ function or stored procedure
invokes SQL, returns parameters from the SQL system to the calling
environment, or returns result sets from SQL to the calling
environment, you must use an Adaptive Server JIDBC interface, such
as Sybase jConnect or the internal Adaptive Server JDBC driver, that
enabl es obj ect-oriented access to the relational database.

Security and permissions

Sybase provides different security modelsfor SQL Jstored proceduresand
SQLJ functions.

SQL Jfunctions and user-defined functions (UDFs) (see “Invoking Java
methodsin SQL” on page 30) use the same security model. Permission to
execute any UDF or SQLJ function is granted implicitly to public. If the
function performs SQL queriesviaJDBC, permission to accessthe datais
checked against the invoker of the function. Thus, if user A invokes a
function that accessestablet1, user A must have select permission ont1 or
the query fails.

SQL J stored procedures use the same security model as Transact-SQL
stored procedures. The user must be granted explicit permissionto execute
aSQLJor Transact-SQL stored procedure. If a SQL J procedure performs
SQL queriesviaJDBC, implicit permission grant support is applied. This
security model alows the owner of the stored procedure, if the owner
owns all SQL objects referenced by the procedure, to grant execute
permission on the procedure to another user. The user who has execute
permission can executeall SQL queriesinthe stored procedure, evenif the
user does not have permission to access those objects.

For a more detailed description of security for stored procedures, see the
System Administration Guide.

77

Invoking Java methods in Adaptive Server

SQLJExamples

The examples used in this chapter assume a SQL table called sales_emps
with these columns:

name —the employee’s name

id —the employee’s identification number

state — the state in which the employeeislocated
sales —amount of the employee’s sales

jobcode — the employee’s job code

The table definitionis:

create table sales emps
(name varchar (50), id char(5),
state char (20), sales decimal (6,2),
jobcode integer null)

he example classis SQLJExamples, and the methods are:

region() —mapsaU.S. state codeto aregion number. The method does
not use SQL.

correctStates() — performs a SQL update command to correct the
spelling of state codes. Old and new spellings are specified by input
parameters.

bestTwoEmps() — determines the top two employees by their sales
records and returns those val ues as output parameters.

SQLJExamplesorderedEmps() — creates a SQL result set consisting of
selected employee rows ordered by valuesin the sales column, and
returns the result set to the client.

job() — returns a string value corresponding to an integer job code
value.

See “SQL JExamples class’ on page 105 for the text of each method.

Invoking Java methods in Adaptive Server

You can invoke Java methods in two different waysin Adaptive Server:

78

CHAPTER 5 SQLJ Functions and Stored Procedures

Invoking Java methods
directly with their Java
names

Invoking Java methods
indirectly using SQLJ

e Invoke Java methods directly in SQL. Directions for invoking
methodsin thisway are presented in Chapter 3, “Using Java Classes

inSQL.”

* Invoke Java methods indirectly using SQLJ stored procedures and
functions that provide Transact-SQL aliases for the method name.
This chapter describes invoking Java methods in this way.

Whichever way you choose, you must first create your Java methods and
install them in the Adaptive Server database using the installjava utility.
See Chapter 2, “ Preparing for and Maintaining Javain the Database,” for
more information.

You can invoke Javamethodsin SQL by referencing them with their fully
qualified Javanames. Referenceinstancesfor instance methods, and either
instances or classes for static methods.

You can use static methods as user-defined functions (UDFs) that return a
value to the calling environment. You can use a Java static method as a
UDF in stored procedures, triggers, where clauses, select statements, or
anywhere that you can use a built-in SQL function.

When you call aJavamethod using its name, you cannot use methods that
return output parameters or result sets to the calling environment. A
method can manipulate the dataiit receives from a JDBC connection, but
the method can only return the singlereturn value declared inits definition
to the calling environment.

You cannot use cross-database i nvocations of UDF functions.

See Chapter 3, “Using Java Classesin SQL,” for information about using
Java methods in this way.

You can invoke Java methods as SQL J functions or stored procedures. By

wrapping the Javamethod in a SQL wrapper, you take advantage of these

capabilities:

e You can use SQLJ stored procedures to return result sets and output
parameters to the calling environment.

e You can take advantage of SQL metadata capabilities. For example,
you can view alist of all stored procedures or functionsin the
database.

e SQLJprovidesaSQL namefor amethod, which allowsyouto protect
the method invocation with standard SQL permissions.

79

Using Sybase Central to manage SQLJ functions and procedures

e Sybase SQLJ conformsto the recognized SQLJ Part 1 standard,
which allows you to use Sybase SQL J procedures and functionsin
conforming non-Sybase environments.

e You caninvoke SQLJfunctions and SQL J stored procedures across
databases.

e Because Adaptive Server checks datatype mapping when the SQLJ
routineis created, you need not be concerned with datatype mapping
when executing the routines.

You must reference static methodsin aSQL Jroutine; you cannot reference
instance methods.

This chapter describes how you can use Java methods as SQL J stored
procedures and functions.

Using Sybase Central to manage SQLJ functions and
procedures

You can manage SQL J functions and procedures from the command line
using isql and from the Adaptive Server plug-in to Sybase Central. From
the Adaptive Server plug-in you can:

» Create a SQLJfunction or procedure

» Execute a SQLJfunction or procedure

* View and modify the properties of a SQLJfunction or procedure
» DeleteaSQLJfunction or procedure

» View the dependencies of a SQLJ function or procedure

» Create permissions for a SQL J procedure

Thefollowing procedures describes how to create and view the properties
of a SQLJroutine. You can view dependencies and create and view
permissions from the routine's property sheet.

[ICreating a SQLJ function/procedure

First, create and compile the Java method. Install the method classin the
database using installjava. Then follow these steps:

1 Sart the Adaptive Server plug-in and connect to Adaptive Server.

80

CHAPTER 5 SQLJ Functions and Stored Procedures

2 Double-click on the database in which you want to create the routine.
3 Open the SQLJ Procedures/SQL J Functions folder.

4 Double-click the Add new Java Stored Procedure/Function icon.

5

Usethe Add new Java Stored Procedure/Function wizard to create the
SQLJ procedure or function.

When you have finished using the wizard, the Adaptive Server plug-
in displaysthe SQL Jroutineyou have created in an edit screen, where
you can modify the routine and execute it.

[TTo view the properties of a SQLJ function or procedure
1 Start the Adaptive Server plug-in and connect to Adaptive Server.
2 Double-click on the database in which the routine is stored.
3 Open the SQLJ Procedures/SQL J Functions folder.
4 Highlight afunction or procedure icon.
5 Select File| Properties.

SQLJ user-defined functions

The create function command specifies a SQLJ function name and
signature for a Java method. You can use SQLJ functionsto read and
modify SQL and to return a value described by the referenced method.

The SQLJ syntax for create function is:

create function [owner].sgl function name
([sql parameter name sql datatype

[(Iength)| (precisionl, scale])]
[, sgl parameter name sgl datatype
[(length) | (precision[, scalel) 11

.21

returns sgl_datatype

[(Iength)| (precisionl, scale])]
[modifies sgl datal
[returns null on null input |

called on null input]
[deterministic | not deterministic]
[exportable]
language java

81

SQLJ user-defined functions

parameter style java

external name 'java method name
[([java datatypel {, java datatype }
oD

When creating a SQL J function:

82

The SQL function signatureisthe SQL datatype sql_datatype of
each function parameter.

To comply with the ANSI standard, do not include an @ sign before
parameter names.

Sybase adds an @ sign internally to support parameter name binding.
You will see the @ sign when using sp_help to print out information
about the SQLJ stored procedure.

When creating a SQL Jfunction, you must include the parenthesesthat
surround the sql_parameter _name and sgl_datatype information—
even if you do not include that information.

For example:

create function sqglj fc()
language java
parameter style java
external name 'SQLJExamples.method!

The modifies sql data clause specifies that the method invokes SQL
operations and reads and modifies SQL data. Thisisthe default value.
You do not need to include it except for syntactic compatibility with
the SQLJ Part 1 standard.

esreturns null on null input and called on null input specify how
Adaptive Server handles null arguments of afunction call. returns null
on null input specifies that if the value of any argument is null at
runtime, the return value of the function is set to null and the function
body is not invoked. called on null input is the default. It specifies that
the function isinvoked regardless of null argument values.

Function calls and null argument values are described in detail in
“Handling nullsin the function call” on page 86.

You can include the deterministic or not deterministic keywords, but
Adaptive Server does not use them. They areincluded for syntactic
compatibility with the SQLJ Part 1 standard.

CHAPTER 5 SQLJ Functions and Stored Procedures

Writing the Java method

Creating the SQLJ function

e Clauses exportable keyword specifies that the functionisto runon a
remote server using Sybase OmniConnect™ capabilities. Both the
function and the method on which it is based must be installed on the
remote server.

e Clauseslanguage java and parameter style java specify that the
referenced method iswritten in Javaand that the parameters are Java
parameters. You must include these phrases when creating a SQLJ
function.

e Theexternal name clause specifies that the routine is not written in
SQL and identifiesthe Javamethod, classand, package name (if any).

« TheJavamethod signature specifies the Java datatype java_datatype
of each method parameter. The Java method signatureis optional. If
itisnot specified, Adaptive Server infers the Java method signature
from the SQL function signature.

Sybase recommends that you include the method signature as this
practice handles all datatype trandlations. See “Mapping Java and
SQL datatypes’ on page 98.

e You can define different SQL names for the same Java method using
create function and then use them in the same way.

Before you can create a SQL J function, you must write the Java method
that it references, compile the method class, and install it in the database.

In this example, SQLJExamples.region() maps a state code to aregion
number and returns that number to the user.

public static int region(String s)
throws SQLException {

s = s.trim() ;

if (s.equals(“MN”) || s.equals(“VT”) ||
s.equals (“NH”)) return 1;

if (s.equals(“FL”) || s.equals(“GA") ||
s.equals (“AL”)) return 2;

if (s.equals(“CA”) || s.equals(™az”) ||
s.equals (“NV”)) return 3;

else throw new SQLException
(“Invalid state code”, “X2001");

After writing and installing the method, you can create the SQL Jfunction.
For example:

83

SQLJ user-defined functions

Calling the function

create function region of (state char(20))
returns integer

language java parameter style java

external name
'SQLJExamples.region(java.lang.String) '

The SQLJ create function statement specifies an input parameter (state
char (20)) and an integer return value. The SQL function signatureis
char(20). The Java method signature is java.lang.String.

You can call aSQLJfunction directly, asif it were abuilt-in function. For
example:

select name, region of (state) as region
from sales_emps
where region of (state)=3

Note The search sequence for functionsin Adaptive Server is:
1 Built-in functions

2 SQLJfunctions

3 Java-SQL functionsthat are called directly

Handling null argument values

84

Java class datatypes and Java primitive datatypes handle null argument
valuesin different ways.

» Javaobject datatypesthat are classes—such asjava.lang.Integer,
java.lang.String, java.lang.byte[], and java.sql.Timestamp—can hold
both actual values and null reference values.

» Java primitive datatypes—such as boolean, byte, short, and int—
have no representation for a null value. They can hold only non-null
values.

When a Javamethod isinvoked that causesa SQL null value to be passed
as an argument to a Java parameter whose datatype isa Javaclass, it is
passed as a Java null reference value. When a SQL null value is passed as
an argument to a Java parameter of a Java primitive datatype, however, an
exception is raised because the Java primitive datatype has no
representation for anull value.

CHAPTER 5 SQLJ Functions and Stored Procedures

Typicaly, you will write Java methods that specify Java parameter
datatypesthat are classes. In this case, nulls are handled without raising an
exception. If you choose to write Java functions that use Java parameters
that cannot handle null values, you can either:

e Include the returns null on null input clause when you create the SQLJ
function, or

e Invokethe SQLJfunction using a case or other conditional
expression to test for null values and call the SQLJ function only for
the non-null values.

You can handle expected nullswhen you create the SQL Jfunction or when
you call it. The following sections describe both scenarios, and reference
this method:

public static String job(int jc)
throws SQLException {

if (jc==1) return “Admin”;

else if (jc==2) return “Sales”;

else if (jc==3) return “Clerk”;

else return “unknown jobcode”;

}

Handling nulls when creating the function

If null values are expected, you can include the returns null on null input
clause when you create the function. For example:

create function job of (jc integer)
returns wvarchar (20)

returns null on null input

language java parameter style java

external name 'SQLJExamples.job(int)''

You can then call job_of in thisway:

select name, job_of (jobcode)
from sales emps
where job_ of (jobcode) <> “Admin”

When the SQL system evaluates the call job_of(jobcode) for arow of
sales_emps inwhich thejobcode columnisnull, thevalue of thecal isset
to null without actually calling the Java method SQLJExamples.job. For
rows with non-null values of the jobcode column, the call is performed
normally.

85

SQLJ user-defined functions

Thus, when a SQLJ function created using the returns null on null input
clause encounters a null argument, the result of the function call is set to
null and the function is not invoked.

Note If you include the returns null on null input clause when creating a
SQLJ function, the returns null on null input clause appliesto all function
parameters, including nullable parameters.

If you include the called on null input clause (the default), null arguments
for non-nullable parameters generates an exception.

Handling nulls in the function call

You can use a conditional function call to handle null values for non-
nullable parameters. The following example uses a case expression:

select name,
case when jobcode is not null
then job of (jobcode)
else null end
from sales_emps where
case when jobcode is not null
then job of (jobcode)
else null end <> “Admin”

In this example, we assume that the function job_of was created using the
default clause called on null input.

Deleting a SQLJ function name

You can delete the SQLJ function name for a Java method using the drop
function command. For example, enter:

drop function region of

which deletes the region_of function name and its reference to the
SQLJExamples.region method. drop function does not affect the referenced
Java method or class.

See the Reference Manual for complete syntax and usage information.

86

CHAPTER 5 SQLJ Functions and Stored Procedures

SQLJ stored procedures

Using Java-SQL capahilities, you can install Java classes in the database
and then invoke those methods from aclient or from within the SQL
system. You can also invoke Java static (class) methods in another way—
as SQL J stored procedures.

SQLJ stored procedures:

e Can return result sets and/or output parameters to the client

* Behave exactly as Transact-SQL stored procedures when executed
e Can becalled from the client using ODBC, isgl, or JDBC

e Canbecalled withinthe server from other stored procedures or native
Adaptive Server IDBC

The end user need not know whether the procedure being calledisa SQL J
stored procedure or a Transact-SQL stored procedure. They are both
invoked in the same way.

The SQLJ syntax for create procedure is:

create procedure [owner.]sqgl procedure name
([[in | out | inout] sgl parameter name
sgl datatype [(length) |
(precision([, scale])]
[, [in | out | inout] sgl parameter name
sqgl datatype [(length) |
(precision[, scale]l) 1]
1)
[modifies sqgl datal
[dynamic result sets integer]
[deterministic | not deterministic]
language java
parameter style java
external name 'java method name
[([java datatypel, java datatype
1D

Note To comply with the ANSI standard, the SQL J create procedure
command syntax is different from syntax used to create Sybase Transact-
SQL stored procedures.

Refer to the Reference Manual for a detailed description of each keyword
and option in this command.

87

SQLJ stored procedures

88

When creating SQL J stored procedures:

The SQL procedure signature is the SQL datatype sgl_datatype of
each procedure parameter.

When creating a SQL J stored procedure, do not include an @ sign
before parameter names. This practise is compliant with the ANSI
standard.

Sybase adds an @ sign internally to support parameter name binding.
You will see the @ sign when using sp_help to print out information
about the SQLJ stored procedure.

When creating a SQL J stored procedure, you must include the
parentheses that surround the sgl_parameter_name and sgl_datatype
information—even if you do not include that information.

For example:

create procedure sglj sproc ()
language java
parameter style java

external name ‘SQLJExamples.methodl’

You can include the keywords modifies sql data to indicate that the
method invokes SQL operations and reads and modifies SQL data.
Thisisthe default value.

You must include the dynamic result sets integer option when result
sets are to be returned to the calling environment. Use the integer
variable to specify the maximum number of result sets expected.

You can include the keywords deterministic or not deterministic for
compatibility with the SQLJ standard. However, Adaptive Server
does not make use of this option.

You must include the language java parameter and style java
keywords, which tell Adaptive Server that the external routineis
written in Java and the runtime conventions for arguments passed to
the external routine are Java conventions.

The external name clause indicates that the external routineiswritten
in Java and identifies the Java method, class, and package name (if

any).

The Java method signature specifies the Java datatype java_datatype
of each method parameter. The Java method signature is optional. If
oneis not specified, Adaptive Server infers one from the SQL
procedure signature.

CHAPTER 5 SQLJ Functions and Stored Procedures

Modifying SQL data

Writing the Java method

Sybase recommends that you include the method signature as this
practice handles all datatype trandlations. See “Mapping Java and
SQL datatypes’ on page 98 for more information.

e You can define different SQL names for the same Java method using
create procedure and then use them in the same way.

You can use a SQL J stored procedure to modify information in the
database. The method referenced by the SQL J procedure must be either:

* A method of type void, or

* A method with an int return type (incorporation of the int return type
is a Sybase extension of the SQLJ standard).

The method SQLJExamples.correctStates() performs a SQL update
statement to correct the spelling of state codes. Input parameters specify
the old and new spellings. correctStates() is avoid method; no valueis
returned to the caller.

public static void correctStates (String oldSpelling,
String newSpelling) throws SQLException

Connection conn = null;
PreparedStatement pstmt = null;
try {
Class.forName (”sybase.asejdbc.ASEDriver”) ;
conn = DriverManager.getConnection
(“jdbc:default:connection”) ;

catch (Exception e) {
System.err.println(e.getMessage () +
“:error in connection”) ;
try {

pstmt = conn.prepareStatement
(“UPDATE sales emps SET state = ?
WHERE state = ?7);
pstmt.set.String (1, newSpelling) ;
pstmt.set.String (2, oldSpelling);
pstmt .executeUpdate () ;
}
catch (SQLException e) ({
System.err.println (“SQLException: “ +

89

SQLJ stored procedures

Creating the stored
procedure

Calling the stored
procedure

e.getErrorCode () + e.getMessage()) ;

}

return;

}

Before you can call a Java method with a SQL name, you must create the
SQL namefor it using the SQL J create procedure command. The modifies
sgl data clauseis optional.

create procedure correct states(old char(20),
not_old char(20))
modifies sqgl data
language java parameter style java
external name
'SQLJExamples.correctStates
(java.lang.String, java.lang.String)'

The correct_states procedure has a SQL procedure signature of char(20),
char(20). The Java method signature is java.lang.String, java.lang.String.

You can execute the SQL J procedure exactly as you would a Transact-
SQL procedure. In this example, the procedure executes from isql:

execute correct_states 'GEO', 'GA'

Using input and output parameters

90

Java methods do not support output parameters. When you wrap a Java
method in SQL, however, you can take advantage of Sybase SQLJ
capabilitiesthat allow input, output, and input/output parametersfor SQLJ
stored procedures.

When you create a SQL J procedure, you identify the mode for each
parameter asin, out, Or inout.

» For input parameters, use the in keyword to qualify the parameter. in
isthe default; Adaptive Server assumes an input parameter if you do
not enter a parameter mode.

» For output parameters, use the out keyword.

CHAPTER 5 SQLJ Functions and Stored Procedures

Writing the Java method

e For parameters that can pass values both to and from the referenced
Java method, use the inout keyword.

Note You create Transact-SQL stored proceduresusing only thein and out
keywords. The out keyword corresponds to the SQL Jinout keyword. See
the create procedure reference pages in the Adaptive Server Reference
Manual for more information.

To create a SQL J stored procedure that defines output parameters, you
must:

« Define the output parameter(s) using either the out or inout option
when you create the SQL J stored procedure.

e Declare those parameters as Java arrays in the Java method. SQLJ
uses arrays as containers for the method's output parameter values.

For example, if you want an Integer parameter to return avalueto the
caller, you must specify the parameter type as Integer[] (an array of
Integer) in the method.

The array object for an out or inout parameter is created implicitly by
the system. It has asingle element. The input value (if any) is placed
in thefirst (and only) element of the array before the Java method is
called. When the Java method returns, the first element is removed
and assigned to the output variable. Typically, this element will be
assigned a new value by the called method.

The following examplesillustrate the use of output parameters using a
Java method bestTwoEmps() and a stored procedure best2 that references
that method.

The SQLJExamples.bestTwoEmps() method returns the name, ID, region,
and sales of thetwo employeeswith the highest sal es performance records.
Thefirst eight parameters are output parameters requiring a containing
array. The ninth parameter is an input parameter and does not require an
array.
public static void bestTwoEmps (String[] nl,

Stringl[] idl, int[] r1,

BigDecimal[] sl1, Stringl[] n2,

String[] id2, int[] r2, BigDecimall[] s2,

int regionParm) throws SQLException {

nl[o] = “****";
idl[o] = ““;

91

SQLJ stored procedures

r1l[0]
sl[o0]
n2[0]
1d2[0]
r2[0]
s2[0]

try {

0;

new BigDecimal (0) :
****II;

0;

new BigDecimal (0) ;

Connection conn = DriverManager.getConnection
(“jdbc:default:connection”) ;

java.
conn.prepareStatement (“"SELECT name,

+
+
+
+

stmt.
ResultSet r

sgl.PreparedStatement stmt =
id,”
“region of (state) as region, sales FROM”
“sales _emps WHERE”

“region of (state)>? AND”

“sales IS NOT NULL ORDER BY sales DESC”) ;
setInteger(l, regionParm) ;

stmt .executeQuery () ;

if (r.next ())
nl[0] = r.getString(“name”) ;
id1[0] = r.getString(“id”) ;
r1[0] = r.getInt(“region”) ;
s1[0] = r.getBigDecimal (“sales”) ;
}
else return;
if (r.next()) {
n2[0] = r.getString(“name”) ;
id2[0] = r.getString(“id”) ;
r2[0] = r.getInt(“region”);
s2[0] = r.getBigDecimal (“sales”) ;
}
else return;
}
catch (SQLException e) ({

System.err.println (“SQLException: "
e.getErrorCode ()

}

Creating the SQLJ
procedure

+
+ e.getMessage()) ;

Create a SQL name for the bestTwoEmps method. The first eight
parameters are output parameters; the ninth is an input parameter.

create procedure best2

92

CHAPTER 5 SQLJ Functions and Stored Procedures

(out nl varchar(50), out idl varchar(5),

out sl decimal(6,2), out rl integer,

out n2 varchar(50), out id2 wvarchar(50),

out r2 integer, out s2 decimal (6,2),

in region integer)

language java

parameter style java

external name
'SQLJExamples.bestTwoEmps (java.lang.String,
java.lang.String, int, java.math.BigDecimal,
java.lang.String, java.lang.String, int,
java.math.BigDecimal, int)'

The SQL procedure signature for best2 is: varchar(20), varchar(s), decimal
(6,2) and so on. The Java method signature is String, String, int, BigDecimal
and so on.

Calling the procedure After the method isinstalled in the database and the SQL J procedure
referencing the method has been created, you can call the SQL Jprocedure.

At runtime, the SQL system:

1 Createsthe needed arrays for the out and inout parameters when the
SQLJ procedure is called.

2 Copiesthe contents of the parameter arrays into the out and inout
target variables when returning from the SQL J procedure.

The following example calls the best2 procedure from isql. The value for
the region input parameter specifies the region number.

declare @nl varchar(50), @idl varchar(5),
@sl decimal (6,2), @rl integer, @n2 varchar (50),
@id2 varchar (50), @r2 integer, @s2 decimal(6,2),
@region integer

select @region = 3

execute best2 @nl out, @idl out, @sl out, @rl out,
@n2 out, @id2 out, @r2 out, @s2 out, @region

Note Adaptive Server calls SQLJ stored procedures exactly asit calls
Transact-SQL stored procedures. Thus, when using isqgl or any other non-
Javaclient, you must precede parameter names by the @ sign.

93

SQLJ stored procedures

Returning result sets

Writing the Java method

94

A SQL result set isasequence of SQL rowsthat isdelivered to the calling
environment.

When a Transact-SQL stored procedure returns one or more results sets,
those result sets are implicit output from the procedure call. That is, they
are not declared as explicit parameters or return values.

Javamethods can return Javaresult set objects, but they do so asexplicitly
declared method values.

To return a SQL-style result set from a Java method, you must first wrap
the Javamethod in a SQL J stored procedure. When you call the method as
a SQLJ stored procedure, the result sets, which are returned by the Java
method as Java result set objects, are transformed by the server to SQL
result sets.

When writing the Java method to be invoked as a SQL J procedure that
returns a SQL -style result set, you must specify an additional parameter to
the method for each result set that the method can return. Each such
parameter is asingle-element array of the Java ResultSet class.

This section describes the basic process of writing a method, creating the
SQLJ stored procedure, and calling the method. See “ Specifying Java
method signatures explicitly or implicitly” on page 99 for more
information about returning result sets.

The following method, SQLJExamples.orderedEmps, invokes SQL,
includes a ResultSet parameter, and uses JDBC calls for securing a
connection and opening a statement.

public static void orderedEmps
(int regionParm, ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstmt = null;

try {
Class. forName
(“sybase.asejdbc.ASEDriver”) ;
Connection conn =
DriverManager.getConnection
(“jdbc:default:connection”) ;

}

catch (Exception e)

CHAPTER 5 SQLJ Functions and Stored Procedures

System.err.println(e.getMessage ()

+ “:error in connection”) ;
try {
java.sql.PreparedStatement
stmt = conn.prepareStatement

(“SELECT name, region of (state)”
“as region, sales FROM sales_emps”
“WHERE region of (state) > ? AND”
“sales IS NOT NULL”
“ORDER BY sales DESC”) ;
stmt.setInt (1, regionParm) ;
rs[0] = stmt.executeQuery|() ;
return;

}

catch (SQLException e) ({
System.err.println (“SQLException:”
+ e.getErrorCode () + e.getMessage());

}

return;

orderedEmps returns a single result set. You can also write methods that
return multiple result sets. For each result set returned, you must:

e Include aseparate ResultSet array parameter in the method signature.
e Create a Statement object for each result set.
e Assign each result set to the first element of its ResultSet array.

Adaptive Server aways returns the current open ResultSet object for each
Statement object. When creating Java methods that return result sets:

« Create a Statement object for each result set that isto be returned to
the client.

95

SQLJ stored procedures

Creating the SQLJ stored
procedure

Calling the procedure

96

» Do not explicitly close ResultSet and Statement objects. Adaptive
Server closes them automatically.

Note Adaptive Server ensures that ResultSet and Statement objects
are not closed by garbage collection unless and until the affected
result sets have been processed and returned to the client.

» If some rows of the result set are fetched by calls of the Java next()
method, only the remaining rows of the result set are returned to the
client.

When you create a SQL J stored procedure that returns result sets, you
must specify the maximum number of result setsthat can be returned. In
this example, the ranked_emps procedure returns a single result set.

create procedure ranked emps (region integer)
dynamic result sets 1
language java parameter style java
external name 'SQLJExamples.orderedEmps (int,
ResultSet []'

If ranked_emps generates more result sets than are specified by create
procedure, awarning displays and the procedure returns only the number
of result sets specified. Aswritten, the ranked_emps SQL J stored
procedures matches only one Java method.

Note Some restrictions apply to method overloading when you infer a
method signature involving result sets. See “Mapping Java and SQL
datatypes’ on page 98 for more information.

After you haveinstalled the method's classin the database and created the
SQLJ stored procedure that references the method, you can call the
procedure. You can write the call using any mechanism that processes
SQL result sets.

For example, to call the ranked_emps procedure using JDBC, enter the
following:

java.sgl.CallableStatement stmt =
conn.prepareCall (“{call ranked emps(?)}”);
stmt.setInt (1,3);

ResultSet rs = stmt.executeQuery () ;
while (rs.next()) ({
String name = rs.getString(l) ;

int.region = rs.getInt(2);

CHAPTER 5 SQLJ Functions and Stored Procedures

BigDecimal sales = rs.get.BigDecimal (3) ;
System.out.print (*Name = “ + name) ;
System.out .print (*Region = “ + region) ;
System.out.print (“*Sales = “ + sales);

System.out.printIn() :

}

The ranked_emps procedure supplies only the parameter declared in the
create procedure statement. The SQL system supplies an empty array of
ResultSet parameters and calls the Java method, which assigns the output
result set to the array parameter. When the Java method compl etes, the
SQL system returns the result set in the output array element as a SQL
result set.

Note You can return result sets from atemporary table only when using
an external JDBC driver such as jConnect. You cannot use the Adaptive
Server native JDBC driver for thistask.

Deleting a SQLJ stored procedure name

You can delete the SQL J stored procedure name for a Java method using
the drop procedure command. For example, enter:

drop procedure correct states

which deletes the correct_states procedure name and its reference to the
SQLJExamples.correctStates method. drop procedure does not affect the
Java class and method referenced by the procedure.

Viewing information about SQLJ functions and
procedures

Several system stored procedures can provide information about SQL J
routines:

e sp_depends lists database objects referenced by the SQL Jroutine and
database objects that reference the SQL J routine.

e sp_help lists each parameter name, type, length, precision, scale,
parameter order, parameter mode and return type of the SQL Jroutine.

97

Advanced topics

* sp_helpjava listsinformation about Javaclasses and JARsinstalled in
the database. The depends parameter lists dependencies of specified
classesthat are named in the external name clause of the SQL J create
function or SQLJ create procedure statement.

e sp_helprotect reports the permissions of SQLJ stored procedures and
SQL Jfunctions.

See the Adaptive Server Reference Manual for complete syntax and usage
information for these system procedures.

Advanced topics

The following topics present a detailed description of SQLJ topics for
advanced users.

Mapping Java and SQL datatypes

98

When you create a stored procedure or function that references a Java
method, the datatypes of input and output parameters or result sets must
not conflict when values are converted from the SQL environment to the
Java environment and back again. The rules for how this mapping takes
place are consistent with the IDBC standard implementation. They are
shown below and in Table 5-1 on page 99.

Each SQL parameter and its corresponding Java parameter must be
mappable. SQL and Java datatypes are mappable in these ways:

* A SQL datatype and aprimitive Java datatype are simply mappableif
so specified in Table 5-1.

* A SQL datatype and a non-primitive Java datatype are object
mappable if so specified in Table 5-1.

* A SQL abstract datatype (ADT) and anon-primitive Javadatatype are
ADT mappable if both are the same class or interface.

* A SQL datatype and a Java datatype are output mappable if the Java
datatypeisan array and the SQL datatype is simply mappable, object
mappable, or ADT mappable to the Java datatype. For example,
character and String[] are output mappable.

CHAPTER 5 SQLJ Functions and Stored Procedures

Specifying Java method
signatures explicitly or
implicitly

e A Javadatatypeisresult-set mappableif itisan array of theresult set-
oriented class:. java.sgl.ResultSet.

In general, a Java method is mappable to SQL if each of its parametersis
mappableto SQL and its result set parameters are result-set mappable and
the return type is either mappable (functions) or void or int (procedures).

Support for int return types for SQLJ stored procedures is a Sybase
extension of the SQLJ Part 1 standard.

Table 5-1: Simply and object mappable SQL and Java datatypes
SQL datatype Corresponding Java datatypes
Simply mappable Object mappable
javalang.String
nchar javalang.String
varchar/univarchar javalang.String

char/unichar

nvarchar javalang.String

text javalang.String
numeric java.math.BigDecimal
decimal java.math.BigDecimal
money java.math.BigDecimal
smallmoney java.math.BigDecimal
bit boolean Boolean

tinyint byte Integer

smallint short Integer

integer int I nteger

real float Float

float double Double

double precision double Double

binary byte[]

varbinary byte[]

datetime java.sgl.Timestamp
smalldatetime java.sgl.Timestamp

When you create a SQLJ function or stored procedure, you typically
specify a Java method signature. You can also allow Adaptive Server to
infer the Java method signature from the routine's SQL signature
according to standard JDBC datatype correspondence rules described
earlier in this section and in Table 5-1.

Sybase recommends that you include the Java method signature as this
practise ensures that all datatype trandlations are handled as specified.

99

Advanced topics

100

You can allow Adaptive Server to infer the method signature for datatypes
that are:

e Simply mappable

e ADT mappable

e Output mappable

» Result-set mappable

For example, if youwant Adaptive Server toinfer the method signature for
correct_states, the create procedure statement is:

create procedure correct states(old char(20),
not_old char(20))
modifies sqgl data
language java parameter style java
external name ‘SQLJExamples.correctStates’

Adaptive Server infers a Java method signature of java.lang.String and
java.lang.String. If you explicitly add the Java method signature, the create
procedure statement looks like this;

create procedure correct states(old char(20),
not_old char(20))
modifies sqgl data
language java parameter style java
external name ‘SQLJExamples.correctStates
(java.lang.String, java.lang.String)’

You must explicitly specify the Java method signature for datatypes that
are object mappable. Otherwise, Adaptive Server infers the primitive,
simply mappable datatype.

For example, the SQLIExamples.job method contains a parameter of type
int. (See “Handling null argument values’ on page 84.) When creating a
function referencing that method, Adaptive Server infers a Java signature
of int, and you need not specify it.

However, suppose the parameter of SQLIJExamples.job was Java Integer,
which is the object-mappable type. For example:

public class SQLJExamples {
public static String job(Integer jc)
throws SQLException ...

Then, you must specify the Java method signature when you create a
function that referencesit:

create function job of (jc integer)

CHAPTER 5 SQLJ Functions and Stored Procedures

Returning result sets and
method overloading

Ensuring signature validity

external name
'SQLJExamples.job(java.lang.Integer) '

When you create a SQL J stored procedure that returns result sets, you
specify the maximum number of result sets that can be returned.

If you specify a Java method signature, Adaptive Server looks for the
single method that matches the method name and signature. For example:

create procedure ranked emps (region integer)
dynamic result sets 1
language java parameter style java
external name 'SQLJExamples.orderedEmps
(int, java.sgl.ResultSet[])'

In this case, Adaptive Server resolves parameter types using normal Java
overloading conventions.

Suppose, however, that you do not specify the Java method signature:

create procedure ranked emps (region integer)
dynamic result sets 1
language java parameter style java
external name 'SQLJExamples.orderedEmps'

If two methods exist, one with a signature of int, RS[], the other with a
signatureof int, RS[], RS[], Application Server cannot distinguish between
the two methods and the procedure fails. If you allow Adaptive Server to
infer the Java method signature when returning result sets, make sure that
only one method satisfies the inferred conditions.

Note The number of dynamic result sets specified only affectsthe
maximum number of resultsthat can bereturned. It does not affect method
overloading.

If an installed class has been modified, Adaptive Server checks to make
surethat the method signatureisvalid when you invoke a SQL J procedure
or function that referencesthat class. If the signature of amodified method
is still valid, the execution of the SQLJ routine succeeds.

101

SQLJ and Sybase implementation: a comparison

Using the command main method

InaJavaclient, you typically begin Java applications by running the Java
Virtual Machine (VM) on the command main method of a class. The
JDBCExamples class, for example, contains a main method. When you
execute the class from the command line as in the following:

java JDBCExamples

it is the command main method that executes.

Note You cannot reference a Java main method in a SQLJ create function
statement.

If you reference a Javamain method in a SQL J create procedure statement,
the command main method must have the Java method signature
String[] asin:

public static void main(java.lang.Stringl[]) {

If the Javamethod signatureis specified in the create procedure statement,
it must be specified as (java.lang.string(]). If the Java method
signature is not specified, it isassumed to be (java.lang.String[]) .

If the SQL procedure signature contains parameters, those parameters
must be char, unichar, varchar, or univarchar. At runtime, they are passed
asaJavaarray of javalang.String.

Each argument you provide to the SQL J procedure must be char, unichar,
varchar, univarchar, or aliteral string because it is passed to the main
method as an element of the java.lang.String array. You cannot use the
dynamic result sets clause when creating a main procedure.

SQLJ and Sybase implementation: a comparison

102

This section describes differences between SQL J Part 1 standard
specifications and the Sybase proprietary implementation for SQL J stored
procedures and functions.

Table 5-2 describes Adaptive Server enhancements to the SQLJ
implementation.

CHAPTER 5 SQLJ Functions and Stored Procedures

Table 5-2: Sybase enhancements

Category

SQLJ standard

Sybase implementation

create procedure command

Supports only Java methods that do
not return values. The methods must
have void return type.

Supports Java methods that allow an
integer value return. The methods
referenced in create procedure can
have either void or integer return

types.

create procedure and create function
commands

Supports only SQL datatypesin
create procedure Or create function
parameter list.

Supports SQL datatypes and
nonprimitive Java datatypes as
abstract datatypes (ADTS).

SQLJ function and SQL J procedure
invocation

Does not support implicit SQL
conversion to SQLJ datatypes.

Supportsimplicit SQL conversionto
SQLJ datatypes.

SQLJ functions

Does not alow SQLJfunctionsto
run on remote servers.

Allows SQLJ functionsto run on
remote servers using Sybase
OmniConnect capabilities.

drop procedure and drop function
commands

Requires complete command name:
drop procedure or drop function.

Supports complete function name
and abridged names: drop proc and
drop func.

Table 5-3 describes SQL J standard features not included in the Sybase
implementation.

Table 5-3: SQLJ features not supported

SQLJ category

SQLJ standard

Sybase implementation

create function command

Allows users to specify the same
SQL name for multiple SQLJ
functions.

Requires unique namesfor al stored
procedure and functions.

utilities

Supports sqlj.install_jar,
sqlj.replace_jar, sqlj.remove_jar, and
similar utilitiesto install, replace,

and remove JAR files.

Supports the installjava utility and
the remove java Transact-SQL
command to perform similar
functions.

Table 5-4 describes the SQL J standard features supported in part by the
Sybase implementation.

Table 5-4: SQLJ features partially supported

SQLJ category

| SQLJ standard

Sybase implementation

create procedure and create function
commands

Allows usersto install different
classes with the same namein the

samedatabaseif they arein different

JAR files.

Requires unique class namesin the
same database.

103

SQLJ and Sybase implementation: a comparison

SQLJ category

SQLJ standard

Sybase implementation

create procedure and create function
commands

Supports the key words no sql,
contains sq|, reads sq|l data, and
modifies sql data to specify the SQL
operations the Java method can
perform.

Supports modifies sgl data only.

create procedure command

Supports java.sql.ResultSet and the
SQL/OLB iterator declaration.

Supports java.sql.ResultSet only.

drop procedure and drop function
commands

Supportsthekey word restrict, which
requires the user to drop al SQL
objects (tables, views, and routines)
that invoketheprocedure or function
before dropping the procedure or
function.

Does not support the restrict key
word and functionality.

Table 5-5 describes the SQL J implementation-defined featuresin the
Sybase implementation.

Table 5-5: SQLJ features defined by the implementation

SQLJ category

SQLJ standard

Sybase implementation

create procedure and create function
commands

Supports the deterministic |

not deterministic keywords, which
specify whether or not the procedure
or function always returns the same
values for the out and inout
parameters and the function result.

Supports only the syntax for
deterministic | not deterministic, not
the functionality.

create procedure and create function
commands

The validation of the mapping
between the SQL signature and the
Java method signature can be
performed either when the create
command is executed or when the
procedure or function isinvoked.
The implementation defines when
the validation is performed.

If the referenced class has been
changed, performs al validations
when the create command is
executed, which enables faster
execution.

create procedure and create function
commands

104

Can specify the create procedure or
create function commands within
deployment descriptor filesor as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

CHAPTER 5 SQLJ Functions and Stored Procedures

SQLJ category

SQLJ standard

Sybase implementation

Invoking SQL J routines

When aJavamethod executesa SQL
statement, any exception conditions
areraised in the Java method asa
Java exception of the
Exception.SQLException subclass.
The effect of the exception condition
is defined by the implementation.

Follows the rules for Adaptive
Server JDBC.

Invoking SQL Jroutines

Theimplementation defineswhether
aJavamethod called using a SQL
name executes with the privileges of
the user who created the procedure
or function or those of theinvoker of
the procedure or function.

SQLJ procedures and functions
inherit the security features of SQL
stored procedures and Java-SQL
functions, respectively.

drop procedure and drop function
commands

Can specify the drop procedure or
drop function commands within
deployment descriptor filesor as
SQL DDL statements. The
implementation defines which way
(or ways) the commands are
supported.

SQLJExamples class

import
import
import

java.lang. *;
java.sqgl.*;
java.math.*;

Supports create procedure and
create function as SQL DDL
statements outside of deployment
descriptors.

This section displays the SQLIExamples class used to illustrate SQLJ
stored procedures and functions. They arealsoin
$SYBASE/$SYBASE_ASE/sample/Javasyl. (UNIX) or %SYBASEYo\Ase-
12 S\sample\Javasgl (Windows NT).

static String url = “jdbc:default:connection”;

public class SQLExamples

{

public static int region(String s)
throws SQLException {

s = s.trim() ;

if (s.equals (“MN”")
s.equals (“NH")

if (s.equals(“FL")

|| s.equals(“VT") ||
) return 1;
|| s.equals(“Ga") ||

105

SQLJExamples class

s.equals (“AL”)) return 2;

if (s.equals(“CA”) || s.equals(“Az") ||
s.equals (“NV”)) return 3;

else throw new SQLException
(“Invalid state code”, “X2001");

}

public static void correctStates
(String oldSpelling, String newSpelling)
throws SQLException {

Connection conn = null;
PreparedStatement pstmt = null;
try {
Class.forName
("sybase.asejdbc.ASEDriver”) ;
conn = DriverManager.getConnection(url) ;
}
catch (Exception e) {
System.err.println(e.getMessage () +
“:error in connection”) ;

}
try {
pstmt = conn.prepareStatement
(“UPDATE sales emps SET state = ?
WHERE state = ?27);
pstmt.setString (1, newSpelling) ;
pstmt.setString (2, oldSpelling) ;
pstmt.executeUpdate () ;
}
catch (SQLException e) {
System.err.println (“SQLException: “ +
e.getErrorCode () + e.getMessage()) ;

}
public static String job(int jc)
throws SQLException {
if (jc==1) return “Admin”;
else if (jc==2) return “Sales”;
else if (jc==3) return “Clerk”;
else return “unknown jobcode”;
}
public static String job(int jc)
throws SQLException {
if (jc==1) return “Admin”;
else if (jc==2) return “Sales”;

106

CHAPTER 5 SQLJ Functions and Stored Procedures

else if (jc==3) return “Clerk”;
else return “unknown jobcode”;

}

public static void bestTwoEmps (String[] nl,
Stringl[] id1, int[] r1,
BigDecimal[] sl1, Stringl[] n2,
String[] id2, int[] r2, BigDecimall[] s2,
int regionParm) throws SQLException

nl[0] = “kx*xr,

idi[0] = “v;

rl[0] = 0;

s1[0] = new BigDecimal (0) :
n2 [O] = “****";

id2[0] = “%;

r2[0] = O;

s2[0] = new BigDecimal (0) ;

try {

Connection conn = DriverManager.getConnection
(“jdbc:default:connection”) ;

java.sqgl.PreparedStatement stmt =
conn.prepareStatement (*SELECT name, id,”
+ “region of (state) as region, sales FROM”
+ “sales_emps WHERE”
+ “region of (state)>? AND”
+ “sales IS NOT NULL ORDER BY sales DESC”) ;

stmt.setInteger (1, regionParm) ;

ResultSet r = stmt.executeQuery () ;

if (r.next()) {
nl[0] = r.getString(“name”) ;
id1[0] = r.getString(“id”);
r1[0] = r.getInt(“region”) ;
s1[0] r.getBigDecimal (“sales”) ;

}

else return;

if (r.next()) {
n2[0] = r.getString(“name”) ;
id2[0] = r.getString(“id”) ;
r2[0] r.getInt (“region”) ;
s2[0] r.getBigDecimal (“sales”) ;

}

else return;

107

SQLJExamples class

catch (SQLException e) {
System.err.println (“SQLException: “ +
e.getErrorCode () + e.getMessage()) ;
}

public static void orderedEmps
(int regionParm, ResultSet[] rs) throws
SQLException {

Connection conn = null;
PreparedStatement pstmt = null;

try {
Class. forName
(“sybase.asejdbc.ASEDriver”) ;
Connection conn =
DriverManager.getConnection
(“jdbc:default:connection”) ;
}
catch (Exception e)
System.err.println(e.getMessage ()

+ “:error in connection”) ;
try {
java.sql.PreparedStatement
stmt = conn.prepareStatement

(“SELECT name, region of (state)”
“as region, sales FROM sales_emps”
“WHERE region of (state) > ? AND”
“sales IS NOT NULL”
“ORDER BY sales DESC”) ;
stmt.setInt (1, regionParm) ;
rs[0] = stmt.executeQuery() ;
return;
}
catch (SQLException e) ({
System.err.println (“SQLException:”
+ e.getErrorCode () + e.getMessage()) ;
}
return;
} return;

108

CHAPTER 6

Introduction

Introduction to XML in the
Database

This chapter provides an overview of the eXtensible Markup Language
(XML), and methodsfor storing XML documents in Adaptive Server and
generating them from SQL data.

Topic Page
Introduction 109
An overview of XML 111

Other XML topics are described in these chapters:

e Chapter 7, “Selecting Datawith XQL,” describes how to select raw
datafrom Adaptive Server using the XQL language and displaying it
asan XML document.

e Chapter 8, “Specialized XML Processing,” describes the OrderXxML
class, which is designed for an example application that uses XML
documents for customer order data, and is written specificaly to
process XML documents for order data.

e Chapter 9, “XML for SQL Result Sets,” describesthe ResultSetXML
class, which allows you to generate an XML document representing
a SQL result set, and to access and update such an XML document.

Like Hypertext Markup Language (HTML), XML is amarkup language
and a subset of Standardized General Markup Language (SGML). XML,
however, is more complete and disciplined, and it allows you to define
your own application-oriented markup tags. These properties make XML
particularly suitable for data interchange.

109

Introduction

You can generate XML -formatted documents from data stored in Adaptive
Server and, conversely, store XML documents and data extracted from themin
Adaptive Server. You can also use Adaptive Server to search XML documents
stored on the Web.

Adaptive Server uses the XML Query Language (XQL) to search XML
documents. XQL is a path-based query language that searches the XML
documents using the XML structure.

Many of the XML tools needed to generate and process XML documents are
written in Java. Javain Adaptive Server provides a good base for XML-SQL
applications using both general and application-specific tools.

The XQL processor is aJavaficility that isincluded with the Adaptive Server.
It allows you to query and access XML data stored in Adaptive Server, and to
display the result set as XML documents. See Chapter 7, “ Selecting Datawith
XQL.”

Source code and javadoc

References

110

Adaptive Server includes the Java source code for the XMLResultSet and
OrderXML classes. These classes provide an introduction for coding Java
classes to process XML. The Java source codeisin:

* $SYBASE/ASE-12 5/sample/JavaSgl (UNIX)
* %SYBASE%\Ase-12 S\sample\Javasgl (Windows NT)

These directories also contain javadoc-generated HTML pages containing
specifications for the referenced packages, classes, and methods.

This chapter presents an overview of XML. For detailed information, refer to
these Web documents:

e World Wide Web Consortium (W3C), at http://www.w3.org
e W3C, Document Object Model (DOM), at http://www.w3.0org/DOM/
* WS3C, Extensible Markup Language (XML), at http://www.w3.org/XML/

» W3C, Extensible Stylesheet Language (XSL), at
http://iwww.w3.org/TR/WD-xsl/

Chapter 6 Introduction to XML in the Database

An overview of XML

XML isamarkup language and subset of SGML. It was created to provide
functionality that goes beyond that of HTML for Web publishing and
distributed document processing.

XML islesscomplex than SGML, but more complex and flexiblethan HTML.
Although XML and HTML can usually be read by the same browsers and
processors, XML has characteristics that make it better able to share
documents:

e XML documents possessastrict phrase structure that makesit easy to find
and access data. For example, opening tags of al elements must have both
an opening tag and a corresponding closing tag, for example, <p> A
paragraph.</p>.

e XML letsyou develop and use tags that distinguish different types of data,
for example, customer numbers or item numbers.

e XML letsyou create an application-specific document type, which makes
it possible to distinguish one kind of document from another.

e XML documents allow different displays of the XML data. XML
documents, likeHTML documents, contain only markup and content; they
do not contain formatting instructions. Formatting instructions are
normally provided on the client using eXtensible Style Language (XSL)
specifications.

You can store XML documentsin Adaptive Server as:
e XML in afield of a Java object

e XML inatext or image column

e XML inachar or varchar column

e Parsed XML in animage column

A sample XML document

The sample Order document is designed for a purchase order application.
Customers submit orders, which are identified by a date and a customer ID.
Each order item has an item ID, an item name, a quantity, and a unit
designation.

It might display on screen like this:

111

An overview of XML

ORDER

Date: July 4, 1999
Customer ID: 123

Customer Name: Acme Alpha

Items:

Item ID Item Name Quantity
987 Coupler 5

654 Connector 3dozen
579 Clasp 1

The following is one representation of thisdatain XML:

<?xml version="1.0"?>
<Order>
<Date>1999/07/04</Date>
<CustomerId>123</CustomerIds>
<CustomerName>Acme Alpha</CustomerName>
<Item>

<ItemId> 987</ItemId>
<ItemName>Coupler</ItemName>
<Quantitys>5</Quantity>

</Item>

<Item>

<ItemId>654</ItemId>
<ItemName>Connector</ItemName>
<Quantity unit="12">3</Quantity>
</Item>
<Item>

<ItemId>579</ItemId>
<ItemName>Clasp</ItemName>
<Quantity>1l</Quantity>

</Item>
</Order>

The XML document has two unique characteristics:

e The XML document does not indicate type, style, or color for specifying
item display.

* Themarkup tags are strictly nested. Each opening tag (<tag>) hasa
corresponding closing (</tag>).

The XML document for the order data consists of:

112

Chapter 6 Introduction to XML in the Database

The XML declaration, <?xml version="1.0"?>, identifying “Order” asan
XML document.

XML represents documents as character data. In each document, you
specify the character encoding (character set), either explicitly or
implicitly. To explicitly specify the character set, includeit in the XML
declaration. For example;

<?xml version="1.0”" encoding="I1S0-8859-1">

If you do not include the character set in the XML declaration, the default,
UTFS, is used.

Note When the default character sets of the client and server differ,
Adaptive Server bypasses normal character-set translations so that the
declared character set continues to match the actual character set. See
“Character setsand XML data”’ on page 118.

User-created element tags, such as <Order>...</Order>,
<Customerld>...</Customerld>, <ltem>....</Item>.

Text data, such as“Acme Alpha,” “Coupler,” and “579.”

Attributesembedded in element tags, such as<Quantity unit ="12">. This
embedding allows you to customize el ements.

If your document contains these components, and the element tags are strictly
nested, it is called awell-formed XML document. In the example above,
element tags describe the data they contain, and the document contains no
formatting instructions.

Here is another example of an XML document:

<?xml version="1.0"?>
<Info>
<OneTag>1999/07/04</OneTag>
<AnotherTag>123</AnotherTag>
<LastTag>Acme Alpha</LastTag>
<Thing>
<ThingId> 987</ThingId>
<ThingName>Coupler</ThingName>
<Amount >5</Amount >
<Thing/>
<Thing>
<ThingId>654</ThingId>
<ThingName>Connecter</ThingName>
</Thing>

113

An overview of XML

<Thing>
<ThingId>579</ThingId>
<ThingName>Clasp</ThingName>
<Amount>1</Amount>
</Thing>
</Info>

Thisexample, called “Info,” is also awell-formed document and has the same
structure and data as the XML Order document. However, it would not be
recognized by a processor designed for Order documents because Info uses a
different document type definition (DTD). For more information about DTDs,
see “ XML document types’ on page 116).

HTML display of Order data

114

Consider a purchase order application. Customers submit orders, which are
identified by a Date and the Customer D, and which list one or more items,
each of which has an ItemID, ItemName, Quantity, and units.

The data for such an order might be displayed on a screen as follows:

ORDER
Date: July 4, 1999
Customer ID: 123

Customer Name: Acme Alpha

Items:

Item ID Item Name Quantity
987 Coupler 5

654 Connector 3 dozen
579 Clasp 1

This data indicates that the customer named “ Acme Alpha,” whose Customer
Id is“123", submitted an order on 1999/07/04 for couplers, connectors, and
clasps.

The HTML text for this display of order datais as follows:

<html>
<body>
<p>0ORDER

Chapter 6 Introduction to XML in the Database

<p>Date: July 4, 1999
<p>Customer ID: 123
<p>Customer Name: Acme Alpha
<p>Items:</p>
<table bgcolor=white align=left border="3"
cellpadding=3>
<tr><td>Item ID </tr>
<td>Item Nameé </tr>
<td>Quantityé
</td></td></tr>
<tr><td>987</td>
<td>Coupler</td>
<td>5</td></tr>
<tr><td>654</td>
<td>Connector</td>
<td>3 dozen</td></tr>
<tr><td>579</td>
<td>Clasp</td>
<td>l</tds></tr>
</table>
</body>
</html>

ThisHTML text has certain limitations:

It contains both data and formatting specifications.

e Thedataisthe Customer Id, , and the various Customer Name, ltem
Names, and Quantities.

e The formatting specifications are the indications for type style
(....), color (bcolor=white), and layout
(<table>....</table>, and al so the supplementary field names, such as
“Customer Name”, etc.

The structure of HTML documents is not well suited for extracting data.

Some elements, such as tables, require strictly bracketed opening and
closing tags, but other elements, such as paragraph tags (“<p>"), have
optional closing tags.

Some elements, such as paragraph tags (“<p>") are used for many sorts
of data, soit isdifficult to distinguish between a“ 123" that is a Customer
IDand a“ 123" that isan Item 1D, without specialized inference from
surrounding field names.

115

An overview of XML

This merging of data and formatting, and the lack of strict phrase structure,
makes it difficult to adapt HTML documents to different presentation styles,
and makesit difficult to use HTML documents for data interchange and
storage. XML issimilar to HTML, but includes restrictions and extensions that
address these drawbacks.

XML document types

116

A document type definition (DTD) defines the structure of a class of XML
documents, making it possible to distinguish between classes. A DTD isalist
of element and attribute definitions unique to a class. Once you have set up a
DTD, you can reference that DTD in another document, or embed it in the
current XML document.

The DTD for XML Order documents, discussed in “A sample XML
document” looks like this:

<IELEMENT Order (Date, Customerld, CustomerName,ltem+)>
<IELEMENT Date (#PCDATA)>

<I[ELEMENT Customerld (#PCDATA)>

<IELEMENT CustomerName (#PCDATA)>

<IELEMENT Item (ltemld, ItemName, Quantity)>

<IELEMENT Itemld (#PCDATA)>

<IELEMENT ItemName (#PCDATA)>

<IELEMENT Quantity (#PCDATA)>

<IATTLIST Quantity units CDATA #IMPLIED>

Read line by line, this DTD specifies that:

* Anorder must consist of adate, acustomer ID, acustomer name, and one
or more items. The plus sign, “+”, indicates one or more items. Items
signaled by aplus sign are required. A question mark in the same place
indicates an optional element. An asterisk in the element indicates that an
element can occur zero or more times. (For example, if the word" Item*”
inthefirst line above were starred, there could be no itemsin the order, or
any number of items.)

» Elementsdefined by “ (#PCDATA)” are character text.

* The“<ATTLIST...>" definition in the last line specifies that quantity
elements havea“units’ attribute; “#IMPLIED”, at the end of thelast line,
indicates that the “ units” attribute is optional.

The character text of XML documentsis not constrained. For example, thereis
no way to specify that the text of a quantity element should be numeric, and
thus the following display of datawould be valid:

Chapter 6 Introduction to XML in the Database

<Quantity unit="Baker’s dozen”>three</Quantitys>
<Quantity unit="six packs”>plenty</Quantitys>

Restrictions on the text of elements must be handled by the applications that
process XML data.

An XML's DTD must follow the <?xml version="1.0"7?> instruction. You can
either include the DTD within your XML document, or you can reference an
external DTD.

* Toreferencea DTD externaly, use something similar to:

<?xml version="1.0"?>
<IDOCTYPE Order SYSTEM "Order.dtd">
<Order>

”<./Order>
e Here'show an embedded DTD might look:

<?xml version="1.0"?>

<IDOCTYPE Order [

<IELEMENT Order (Date, Customerld, CustomerName,

ltem+)>

<IELEMENT Date (#PCDATA)

<IELEMENT Customerld (#PCDATA)>

<IELEMENT CustomerName (#PCDATA)>

<IELEMENT Item (Itemld, ItemName, Quantity)>

<IELEMENT Itemld (#PCDATA)>

<IELEMENT ItemName (#PCDATA)>

<IELEMENT Quantity (#PCDATA)>

<IATTLIST Quantity units CDATA #IMPLIED>

>

<Order>
<Date>1999/07/04</Date>
<Customerld>123</Customerld>
<CustomerName>Acme Alpha</CustomerName>

<ltem>

</|téH1>
</Order>

DTDs are not required for XML documents. However, avalid XML
document hasaDTD and conformsto that DTD.

117

An overview of XML

XSL: formatting XML information

You can use X SL to format XML documents. X SL specifications (style sheets)
consist of aset of rulesthat define thetransformation of an XML document into
either an HTML document or a different XML document:

e XSL specifications that transform an XML document into HTML can
specify normal HTML formatting details in the output HTML.

e XSL specifications that transform an XML document into another XML
document can map the input XML document to an output XML document
with different element names and phrase structure.

You can create your own style sheetsto display particular classes for particular
applications. XSL is normally used with presentation applications rather than
with applications for datainterchange or storage.

Character sets and XML data

118

If the declared character sets of your client and server differ, you must be
careful when declaring the character set of your XML documents.

Every XML document has a character-set value. If that encoding is not
declared in the XML declaration, the default value of UTF8 is assumed. The
XML processor, when parsing the XML data, reads this value and handles the
data accordingly. When the default character set of the client and server differ,
Adaptive Server bypasses normal character-set conversionsto ensure that the
declared character set and the actual character set remain the same.

* If youintroduce an XML document into the database by providing the
complete text in the values clause of an insert statement, Adaptive Server
translates the entire SQL statement into the server’s character set before
processing the insertion. Thisis the way Adaptive Server normally
translates character text, and you must make sure that the declared
character set of the XML document matches that of the server.

* If youintroduce an XML document into the database using writetext or
Open Client CT-Library or Open Client DB-Library programs, Adaptive
Server recognizesthe XML document fromthe XML declaration and does
not transl ate the character set to that of the server.

» If youread an XML document from the database, Adaptive Server does
not translate the character set of the data to that of the client, since doing
so might compromise the integrity of the XML document.

Chapter 6 Introduction to XML in the Database

XML parsers

You can analyze XML documents and extract their data using SQL character-
string operations, such as substring, charindex, and patindex. However, it is
more efficient to use Javain SQL, and to use tools written in Java, such as
XML parsers.

XML parsers can:

Check that a document is well-formed and valid.

Handle character-set issues.

Generate a Java representation of a document’s parse tree.
Build or modify a document’s parse tree.

Generate a document’s text from its parse tree.

Many XML parsers are available with afree license or arein the public
domain. They normally implement two standard interfaces: the Simple API for
XML (SAX) and the Document Object Model (DOM).

SAXisaninterface for parsing. It specifies input sources, character sets,
and routines to handle external references. While parsing, it generates
events so that user routines can process the document incrementally, and
it returns a DOM object that isthe parse tree of the document.

DOM isan interface for the parse tree of an XML document. It provides
facilities for stepping through and assembling a parse tree.

Applications that use the SAX and DOM interfaces are portable across XML
parsers.

119

An overview of XML

120

CHAPTER 7 Selecting Data with XQL

Thischapter describeshow you use XQL to select raw datafrom Adaptive
Server, using the XQL language and display the results as an XML

document.
Topic Page
Accessing the XML parser 121
Setting the CLASSPATH environment variable 122
Installing XQL in Adaptive Server 122
Other usages of the XQL package 130
XQL methods 136

Note isql displaysonly thefirst 50 characters of aresult set that is derived
from XML data. However, the examples in this chapter display the entire
result set for purposes of illustration. To see the entire result set for any of
the exampl es, use com.sybase.xml.xgl.XgIDriver to run the query. See
“Other usages of the XQL package” on page 130. You can aso use the
JDBC client, which helps you to store the result as ajava.lang.String.

Adaptive Server features a query engine written in Java, which you can
either install in the server, or run outside the server. Running it outside the
server islike running any Java program on the command line.

This chapter first addresses running the query engine as a standalone
program, outside Adaptive Server. See"Installing XQL in Adaptive
Server” on page 122 for instructions on running the query engineinside
Adaptive Server.

Accessing the XML parser

Whether you install your query engine as a standalone program or inside
Adaptive Server, you must first accessthe XML parser. Sybase
recommends the xerces.jar (vs.1.3.1) parser, available at

121

Setting the CLASSPATH environment variable

e $SYBASE/ASE-12 5/lib/xercesjar (UNIX)

* %SYBASEY%\S\ASE-12 S\lib/xercesjar (Windows NT)
You can download the parser from:

Xerces Java Parser at http://xml.apache.org/xerces-j.

You can also use any parser that is compliant with SAX 2.0.

Setting the CLASSPATH environment variable

To create a standal one program outside Adaptive Server, you must set your
CLASSPATH environment variable to include the directories that contain
xerces.jar and xml.zip. For UNIX , enter:

setenv CLASSPATH S$SYBASE/ASE-12 5/lib/xerces.jar
$SYBASE/ASE—12_5/lib/Xm1.Zip

For Windows NT, enter:

set CLASSPATH = D:\%$SYBASE$\ASE-12 5\lib\xerces.jar
D:\%SYBASE%\ASE—l2_5\lib\xml.zip

Installing XQL in Adaptive Server

This section assumes you have already enabled Javain Adaptive Server. For
information, see Chapter 2, “Preparing for and Maintaining Javain the
Database.”

installjava copiesaJAR fileinto Adaptive Server and makesthe Javaclassesin
that JAR file available for use in the current database. The syntax is:

installjava
-f file_name
[-new | -update]
Where:
» file_nameisthe name of the JAR file you are installing in the server.

* new informsthe server thisisanew file.

122

Chapter 7 Selecting Data with XQL

e update informs the server you are updating an existing JAR file.
For more information about installjava, see the Utility Guide.

To add support for XML in Adaptive Server, you must install the xml.zip and
xerces.jar files. Thesefiles are located in the directories $SYBASE/ASE-
12 5/lib/xml.zip and $SYBASE/ASE-12_5/lib/xerces.jar

For example, toinstall xml.zip, enter:
installjava -Usa -P -Sserver name -f $SYBASE/ASE-12 5/lib/xml.zip
To install xerces.jar, enter:

installjava -Usa -P -Sserver name -f $SYBASE/ASE-12 5/lib/xerces.jar

Note Toinstall xerces.jar in adatabase, you must increase the size of tempdb
by 10MB.

Converting a raw XML document to a parsed version

Use the parse() method to convert and parse araw text or image XML
document and store the result. Use the alter table command to convert the raw
XML document. For example;

alter table XMLTEXT add xmldoc IMAGE null
update XMLTEXT
set xmldoc = com.sybase.xml.xqgl.Xql.query.parse (xmlcol)

This example converts the xmicol column of the XMLTEXT table to parsed data
and storesit in the xmidoc column.

Inserting XML documents

Use the parse() method to insert an XML document, which takes the XML
document as the argument and returns sybase.aseutils.SybXmiStream.

123

Installing XQL in Adaptive Server

Adaptive Server has an implicit mapping between image or text data and
InputStream. YOu can pass image Or text columns to parse() without doing any
casting. The parse() UDF parses the document and returns
sybase.ase.SybXmiStream, which Adaptive Server usesto write the datato the
image column. Adaptive Server writes this data to image columns only, not to
text columns. The following is an insert statement; where XMLDAT is an image
column:

insert XMLDAT
values (..,
com.sybase.xml.xqgl.Xgl.parse (“<xmldoc></xmldoc>", ..))

Updating XML documents

To update adocument, delete the original dataand then insert the new data. The
number of updates to a document or portion of a document are infrequent
compared to the number of reads. An update is similar to:

update XMLDAT
set xmldoc =
com.sybase.xml.xql.Xgl.parse ("<xmldoc></xmldoc>")

Deleting XML documents

Deleting an XML document is similar to deleting any text column. For
example, to delete a table named XMLDAT, enter:

delete XMLDAT

Memory requirements for running the query engine inside Adaptive
Server

Depending on the size of the XML data you want to select and present as an
XQL document, you may need to increase memory. For atypical XML
document of size 2K, Sybase recommends that you set the configuration
parameters in Java Services to the values shown in Table 7-1. For more
information on configuration parameters, see the Sybase Adaptive Server
System Administration Guide.

124

Chapter 7 Selecting Data with XQL

Table 7-1: Java Services memory parameters

Section Reset value
enable java 1

size of process object heap 5000

size of shared class heap 5000

size of global fixed heap 5000

Using XQL

XML Query Language (XQL) has been designed as a general-purpose query
language for XML. XQL is a path-based query language for addressing and
filtering the elements and text of XML documents, and is a natural extension
to XSL syntax. XQL provides a concise, understandable notation for pointing
to specific elements and for searching for nodeswith particul ar characteristics.
XQL navigation is through elementsin the XML tree.

Note SQL and XQL are independent languages. The examples presented here
apply to XQL only.

The most common XQL operators include:

e Child operator, / —indicates hierarchy. The following example returns
<book> elements that are children of <bookstore> elements from the
xmlcol column of the xmlimage table:

select

com. sybase.xml.xqgl.Xgl.query (" /bookstore/book",
xmlcol)

from xmlimage

<xgl results>
<book style=autobiography>
<titles>S

» Descendant operator, // —indicates that the query searches through any
number of intervening levels. That is, a search using the descendant
operator finds an occurrence of an element at any level of the XML
structure. Thefollowing query findsall theinstances of <emph> elements
that occur in an <excerpt> element:

select com.sybase.xml.xgl.Xgl.query
("/bookstore/book/excerpt//emph",xmlcol)
from xmlimage

125

Installing XQL in Adaptive Server

126

<xgl results>

<emph>I</emph>

</xgl_results>

» Equalsoperator, = — specifies the content of an element or the value of an
attribute. The following query finds all examples where “last-name =
Bob”:

select com.sybase.xml.xgl.Xgl.query
("/bookstore/book/author [last-name='Bob']", xmlcol)

from xmlimage

<xgl_results>

<author>

<first-name>Joe</first-name>

<last-name>Bob</last-name>

<award>Trenton Literary Review Honorable Mention</award></author>

<author>

<first-name>Mary</first-name>

<last-name>Bob</last-name>

<publication>Selected Short Stories of

<first-name>Mary</first-name>

<last-name>Bob</last-name></publication></authors>

<author>

<first-name>Toni</first-names>

<last-name>Bob</last-name>

<degree from=Trenton U>B.A.</degree>

<degree from=Harvard>Ph.D.</degree>

<awards>Pulizer</awards>

<publication>Still in Trenton</publications>

<publication>Trenton Forever</publication></authors>
“</xgl_results>

» Filter operator, [] —filters the set of nodes to its | eft, based on the
conditions inside the brackets. This example finds any occurrences of
authors whose first name is Mary that are listed in a book element:

select com.sybase.xml.xgl.Xgl.query
("/bookstore/book [author/first-name = 'Mary'l", xmlcol)

from xmlimage
<xgl results>

<book style=textbook>

<title>History of Trenton</titles>
<authors>

<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>Selected Short Stories of

Chapter 7 Selecting Data with XQL

<first-name>Mary</first-name>
<last-name>Bob</last-name></publication></author>
<price>55</price></book>

* Subscript operator, [index_ordinal] — finds a specific instance of an
element. Thisexamplefindsthe second book listed inthe XML document.
Remember that XQL is zero-based, so it begins numbering at O:

select com.sybase.xml.xgl.Xgl.query ("/bookstore/book[1]", xmlcol)
from xmlimage
Query returned true and the result is
<xgl results>
<book style=textbook>
<title>History of Trenton</titles>
<authors>
<first-name>Mary</first-name>
<last-name>Bob</last-name>
<publication>Selected Short Stories of
<first-name>Mary</first-name>
<last-name>Bob</last-name></publication></author>
<price>55</price></book>
</xgl_results>

« Boolean expressions — you can use Bool ean expressions within filter
operators. For example, this query returns all <author> elements that
contain at least one <degree> and one <award>:

select com.sybase.xml.xgl.Xgl.query
("/bookstore/book/author [degree and award]", xmlcol)
from xmlimage

<xqgl_results>
<authors>
<first-name>Toni</first-name>
<last-name>Bob</last-name>
<degree from=Trenton U>B.A.</degree>
<degree from=Harvard>Ph.D.</degree>
<award>Pulizer</awards>
<publication>Still in Trenton</publications
<publication>Trenton Forever</publications></authors>
</xqgl_results>

Query structures that affect performance

This section describes examples that use the XML query engine in different
ways.

127

Installing XQL in Adaptive Server

Examples

The placement of the where clause in a query affects processing. For example,
this query selects all the books whose author’s first nameis Mary:

select com.sybase.xml.xgl.Xgl.query

("/bookstore/book [author/first-name ='Mary']”, xmlcol)
from XMLDAT
where

com.sybase.xml.xqgl.Xgl.query (“/bookstore/book
[author/first-name= ‘Mary’]”, xmlcol) !=
convert (com. sybase.xml.xgl.Xgl, null)>>EmptyResult

<xgl result ><book style="textbook">

<title>History of Trenton</title>

<authors>

<first-name>Mary</first-name>

<last-name>Bob</last-name>

<publications>

Selected Short Stories of

<first-name>Mary</first-name>

<last-name>Bob</last-name>

</publications>

</authors>

<price>55</price>
</book></xql result>

query() isinvoked twice, onceinthewhere clause and onceinthe select clause,
which means the query executes twice and may be slow for large documents.

Thus, you can save the result set in an object while executing the query in the
where clause and then restore the result in the select clause.

Or, you can write aclasslike HoldString, thats concatenates the results obtained
from every invocation of com.sybase.xml.xgl.Xgl.query(), for each XML
document in each row:

declare @result HoldString

select @result = new HoldString()

select @result>>get()

from XMLDAT

where
@result>>put (com.sybase.xml.xqgl.Xgl.query
(“/bookstore/book [author/first-name= ‘Mary’]”,

xmlcol)) !=

convert (com.sybase.xml.xqgl.Xqgl,null) >>EmptyResult

128

Chapter 7 Selecting Data with XQL

Sybase advises that you do not store the result set in the where clause. The
query does not always execute the where clause, so trying to retrieve its result
in the select clause may generate an erroneous result set. HoldString is an
example class.

Because Adaptive Server stores each document in a column of agiven row,
when the query scans a set of rowsin the where clause, more than one row may
satisfy the search criteria. If this occurs, the query returns a separate XML
result document for each qualified row. For example, if you create the
following table:

create table XMLTAB (xmlcol image)
insert XMLTAB values

(com.sybase.xml.xgl.Xqgl.parse (<xml><A><C>c</C></xml>)) ;
insert XMLTAB values

(com.sybase.xml.xgl.Xqgl.parse (<xml><D><E><C>c</C></E></D></xml>)) ;

Then execute this query:

select com.sybase.xml.xgl.Xgl.query("//C", xmlcol)
from XMLTAB

You would expect to get the following result set:

<xgl results>
<C>c</C>
<C>c</C>
</xgl_results>

Instead, the result set returns the same row twice, once from the select clause
and once from the where clause:

<xgl results>
<C>c</C>
</xgl_results>

<xqgl_results>

<C>c</C>
</xgl_results>

129

Other usages of the XQL package

Other usages of the XQL package

Note Sybase does not support these usages of the X QL package. These usages
require JDK 1.2 or higher.

You can query XML documents from the command line, using the standalone
application com.sybase.xml.xgl.XgIDriver.

You can use Java package methods provided in com.sybase.xml.xgl.Xqgl to query
XML documents in Java applications. You can also use these Java package
methodsto query XML documentsin Adaptive Server 12.5, using the JavaVM
feature.

com.sybase.xml.xgl.XqlDriver can parse and query only XML documents stored
asfiles on your local system. You cannot use com.sybase.xml.xgl.XgIDriver to
parse or query XML documents stored in a database or over the network.

com.sybase.xml.xgl.XqlDriver can be useful for developing XQL scripts and
learning XQL. However, Sybase recommends that you use
com.sybase.xml.xgl.XqIDriver only as a standalone program, and not as part of
another Java application, because com.sybase.xml.xql.XqglDriver includes a
main() method. A Javaprogram can only include one main() method, and if you
include com.sybase.xml.xgl.XgIDriver in another Java program that includes
main(), the application attempts to implement both main() methods, which
causes an error in Java.

Sybase recommends that applications use the com.sybase.xml.xgl.Xgl class to
interface with the XML query engine. The methods of this class are specified
in the section “Methods in com.sybase.xml.xql.Xqgl” on page 136.

com.sybase.xml.xql.XqlDriver syntax

130

The syntax for com.sybase.xml.xgl.XgIDriver is:

java com.sybase.xml.xqgl.XqglDriver
-qgstring XQL_query

-validate true | false

-infile string

-outfile string

-help

-saxparser string

Where:

Chapter 7 Selecting Data with XQL

e gstring specifiesthe XQL query you are running.
e validate checksthe validity of the XML documents.
« infile isthe XML document you are querying.

« outfile isthe operating system file where you are storing the parsed XML
document.

e help displays the com.sybase.xml.xgl.XqgIDriver Syntax.

« saxparser specifiesthe name of a CLASSPATH parser that is compliant
with SAX 2.0.

For information about XQL, see“Using XQL" on page 125.

Sample queries
This query selects all the book titles from bookstore.xml:

java com.sybase.xml.xqgl.XglDriver -gstring "/bookstore/book/title"
-infile bookstore.xml

Query returned true and the result is

<xgl results>

<title>Seven Years in Trenton</title>
<title>History of Trenton</titles>
<title>Trenton Today, Trenton Tomorrow</title>
</xgl_results>

Thisexamplelistsall the author’sfirst names from bookstore.xml. XQL usesa
zero-based numbering system; that is, “0” specifies the first occurrence of an
elementinafile.

java com.sybase.xml.xqgl.XglDriver
-gstring "/bookstore/book/author/first-name[0]"
-infile bookstore.xml

Query returned true and the result is

<xgl results>
<first-name>Joe</first-name>
<first-name>Mary</first-name>
<first-name>Toni</first-name>
</xgl_results>

The following example lists all the authors in bookstore.xml whose last name
is“Bob":

131

Other usages of the XQL package

java com.sybase.xml.xqgl.XglDriver

Query

-gstring "/bookstore/book/author [last-name="'Bob']"
-infile bookstore.xml

returned true and the result is

<xgl results>

<authors>

<first-name>Joe</first-names>
<last-name>Bob</last-name>

<award>Trenton Literary Review Honorable Mention</awards></author>
<author>

<first-name>Mary</first-name>
<last-name>Bob</last-name>

<publication>Selected Short Stories of
<first-name>Mary</first-name>
<last-name>Bob</last-name></publication></author>
<author>

<first-name>Toni</first-name>
<last-name>Bob</last-name>

<degree from=Trenton U>B.A.</degree>

<degree from=Harvard>Ph.D.</degree>
<award>Pulizer</awards>

<publication>Still in Trenton</publications>
<publication>Trenton Forever</publication></author>

</xql result>

Validating your document

The valid option invokes a parser that makes sure the XML document you are
guerying conformsto its DTD. Your standalone XML document must have a
valid DTD before you run the validate option.

For example, this command makes sure the bookstore.xml document conforms
toitsDTD:

java com.sybase.xml.xql.XglDriver -gstring "/bookstore" -validate

132

-infile bookstore.xml

Chapter 7 Selecting Data with XQL

Using XQL to develop standalone applications

You can use XQL to develop standalone applications, JDBC clients,
JavaBeans, and EJBsto process XML data. The query() and parse() methodsin
com.sybase.xml.xgl.Xgl enable you to query and parse XML documents.
Because you can write standal one applications, you do not have to depend on
Adaptive Server to supply the result set. Instead, you can query XML
documents stored as operating system files or stored out on the Web.

Example standalone application

Thefollowing example uses the FileInputStream() query to read bookstore.xm,
and the URL() method to read a Web page named bookstore.xml which contains
information about all the books in the bookstore:

String result;

FileInputStream XmlFile = new FileInputStream("bookstore.xml") ;

if ((result =
Xgl.query (" /bookstore/book/author/first-name", XmlFile))
= Xgl.EmptyResult)

{

}elsef

}

URL url = new URL("http://mybookstore/bookstore.xml") ;

System.out.println (result) ;

System.out.println("Query returned false\n");

if ((result =
Xgl.query (" /bookstore/book/author/first-name",url.openStream()))
= Xgl.EmptyResult)
{
System.out.println (result) ;
}elsef

System.out.println("Query returned false\n");

Example JDBC client

The following code fragment uses the Xql.query method to query the xmicol
column in the XMLTEXT file:

String selectQuery = “select xmlcol from XMLTEXT”;
Statement stmt = con.createStatement () ;
ResultSet rs = (SybResultSet)stmt.executeQuery (selectQuery) ;

133

Other usages of the XQL package

String result;

InputStream is = null;
while ((rs != null) && (rs.next()))

{
is = rs.getAsciiStream(1);
result = Xgl.query(“/bookstore/book/author”, is);

the following example assumes that the parsed XML datais stored in animage
column of the XMLDOC table. Although this application fetches an image
column as abinary stream, it does not parse this during the query because it
identifiesthe content of thisbinary stream asaparsed XML document. Instead,
the application creates a SybXml Stream instance from it and then executes the
query. All thisis done using the Xgl.query() method, and does not require any

input from the user.
String selectQuery = “select xmlcol from XMLDOC”;
Statement stmt = con.createStatement() ;
ResultSet rs = (SybResultSet)stmt.executeQuery(selectQuery) ;
InputStream is = null;
String result
while ((rs != null) && (rs.next()))
{
is = rs.getBinaryStream(l) ;

result = Xgl.query(“/bookstore/book/author/first-name”, is));

Example EJB example

You can write EJB code fragments that serve as query engines on an EJB
server.

The code fragment below includes an EJB called XmIBean. XmlBean includes
thequery() method, which alowsyouto query any XML document on the Web.
In this component, query() first creats an XmiDoc object, then queries the
document.

The remote interface looks like:

public interface XmlBean extends javax.ejb.EJBObject

{
/**
* XQL Method

134

Chapter 7 Selecting Data with XQL

*/

public String XQL(String query, URL location)

java.rmi.RemoteException

}

The Bean implementation looks like:

public class XmlBean extends java.lang.Object implements

javax.ejb.SessionBean

{
Jxnn
* XQL Method
*/

public String XQL(String query, java.net.URL location)

java.rmi.RemoteException

try {
String result;

if ((result =

Xgl.query (query, location.openStream()))

Xgl .EmptyResult)

{

return (result) ;
Jelse{

return (null) ;

}

}catch (Exception e) {

throw new java.rmi.RemoteException(e.getMessage())) ;

}

And the client code looks like:

Context ctx = getInitialContext () ;

// make the instance of the class in Jaguar
XmlBeanHome -beanHome =

(XmlBeanHome) ctx.lookup (“*XmlBean”) ;

_xmlBean = (XmlBean) beanHome.create() ;

URL u = new URL(“http://mywebsite/bookstore.xml”) ;

String res= xmlBean.XQL (“/bookstore/book/author/first-name”, u) ;

135

XQL methods

XQL methods

The XQL methods that Sybase supports and provides with Adaptive Server
follow. For more information on these methods see the Web sitesin the
Reference section of Chapter 6, “Introduction to XML in the Database” .

J attribute
e comment

U element

e id
U node
. p|

U textNode
. textName
. text

e value

Methods in com.sybase.xml.xql.Xql

The following methods are specific to com.sybase.xml.xgl.Xg|.

parse(String xmlDoc)

Description TakesaJava string as an argument and returns SybXml Sream. You can use this
to query a document using XQL.

Syntax parse(String xml_document)
Where:

* String isaJavastring.
» xml_document isthe XML document where the string is located.

Examples The following example:

136

Chapter 7 Selecting Data with XQL

Usage

SybXmlStream xmlStream = Xql.parse ("<xml>..</xml>) ;)
Returns SybXml Sream.
The parser does not:

e Validate the document if aDTD is provided.

e Parseany externa DTDs

e Perform any external links (for example, XLinks)

« Navigate through IDREFs

parse(InputStream xml_document, boolean validate)

Description

Syntax

Examples

Usage

Takes an InputStream and a boolean flag as arguments. The flag indicates that
the parser should validate the document according to aspecified DTD. Returns
SybXmlSream. You can use thisto query a document using XQL.

parse(InputStream xml_document, boolean validate)
Where:

e InputSreamisan input stream.
e xml_document isthe XML document where the input stream originates.
The following example

SybXmlStream is = Xgl.parse (new
FileInputStream("file.xml"), true);

Returns SybXml Sream.

e A truevalueintheflag indicates that the parser should validate the
document according to the specified DTD.

« A fasevauein theflag indicates that the parser does not validate the
document according to the specified DTD.

e The parser does not:
e Parseany externa DTDs
e Perform any external links (for example, XLinks)
« Navigate through IDREFs

137

query(String query, String xmlDoc)

guery(String query, String xmlDoc)

Description Queries an XML document. Uses the XML document as the input argument.
Syntax query(String query,String xmlDoc)
Where:

e Sring query isthe string you are searching for.

» Sring xmldoc isthe XML document you are querying.

Examples The following returns the result as a Java string:
String result= Xgl.query ("/bookstore/book/author",
"exmls>...</xml>") ;

Usage Returns a Java string.

guery(String query, InputStream xmlDoc)

Description Queries an XML document using an input stream as the second argument.
Syntax query(String query,InputStream xmlDoc)
Where:

» Sring query isthe string you are searching for.
e Input Sream xmliDoc isthe XML document you are querying.
Examples This example queries the bookstore for authors listed in bookstore. Xql.

FileInputStream xmlStream = new FileInputStream("doc.xml") ;
String result = Xgl.query ("/bookstore/book/author", xmlStream) ;

Thefollowing example queriesan XML document on the Web using aURL as
the search argument:

URL xmlURL = new URL("http://mywebsite/doc.xml") ;
String result = Xgl.query("/bookstore/book/author", xmlURL.openStream()) ;

Usage Returns a Java string.

138

Chapter 7 Selecting Data with XQL

query(String query, SybXmlStream xmlDoc)

Description Queriesthe XML document using a parsed XML document as the second
argument.

Syntax query(String query, SybXmiStream)
Where:

e Sring query isthe string you are searching for.
« xmldocisthe parsed XML document you are querying.
Examples This example queries the bookstore for authors listed in bookstore. Xml.

SybXmlStream xmlStream = Xgl.parse("<xml>..</xml>) ;
String result = Xgl.query ("/bookstore/book/author",xmlStream) ;

query(String query, JXml jxml)

Description Queriesan XML document stored in aJXML format.
Syntax query(String query, JXml jxml)
Where:

e Sring query isthe string you are searching.
« JXml jxml is an object created from the classes located in $SYBASE/ASE-

12 5/samples/
Examples This example queries for authors in bookstore.Xql
JXml xDoc = new JXml ("<xml>...</xml>");;

String result = Xgl.query ("/bookstore/book/author", xDoc) ;

Usage Allows you to execute a query on an JXML document using XQL.

sybase.aseutils.SybXmlStream

Description Defines an interface that an InputStream needs to access parsed XML data
while querying.

Syntax sybase.aseutils.SybXmlStream interface

139

com.sybase.xml.xgl.store.SybMemXmIStream

com.sybase.xml.xqgl.store.SybMemXmIStream

Description Holds the parsed XML document in main memory, an implementation of
SybXMLStream that Sybase provides.

Syntax com.sybase.xml.xgl.store.SybMemXmIStream

Usage The parse() method returns an instance of SybMemXmiStream after parsing an
XML document.

com.sybase.xml.xqgl.store.SybFileXm|Stream

Description Allows you to query afilein which you have stored a parsed XML document.

Syntax com.sybase.xml.xgl.store.SybFileXmlStream {file_name}
Where file_name is the name of the file in which you stored the parsed XML
document.

Examples In the following, amember of the RandomAccessFile reads afile and positions
the data stream:

SybXmlStream xis = Xgl.parse("<xml>..</xml>");
FileOutputStream ofs = new FileOutputStream("xml.data") ;
((SybMemXmlStream)xis) .writeToFile (ofs) ;

SybXmlStream is = new SybFileXmlStream("xml.data");
String result = Xgl.query("/bookstore/book/author", is);

setParser(String parserName)

Description This static method specifies the parser that the parse method should use. You
should make sure that the specified parser classis accessible through the
CLASSPATH and is compliant with SAX 2.0.

Syntax setParser (String parserName)
Where string is the name of the parser class.
Examples

Xgl.setParser ("com.yourcompany.parser")

140

Chapter 7 Selecting Data with XQL

reSetParser

Description This static method resets the parser to the default parser that Sybase supplies
(xercesjar, Version. 1.3.1).

Syntax reSetParser

Examples This example resets your parser to the Sybase default parser.

xgl.resetParser ()

141

reSetParser

142

CHAPTER 8 Specialized XML Processing

When you store XML documents of aparticular type in Adaptive Server,
you may want to update them or to process them in specialized ways. One
way isto write a Java class specifically designed for the updates and
processing of that type of XML document. Thischapter showsan example
of such aJavaclass, designed for the OrderXML documents described in
Chapter 6, “Introduction to XML in the Database.”

Topic Page
The OrderXml class for order documents 143
Storing XML documents 147
Creating and populating SQL tables for order data 149
Using the element storage technique 151
Using the document storage technique 154
Using the hybrid storage technique 159

This section first describes the OrderXML class and its methods, and then
provides a simple example that demonstrates how you can store XML
documents or the data that they contain in an Adaptive Server database.

The source code and Javadoc for the OrderXML classis located in:
e $SYBASE/ASE-12 5/sample/JavaSgl (UNIX)
e %SYBASE%\ASE-12 5\sample\Javasgl (Windows NT)

The OrderXml class for order documents

The examples in this section use the OrderXML class and its methods for
basic operations on XML Order documents.

OrderXML is a subclass of the JXml class, which is specialized for XML
Order documents. The OrderXML constructor validates the document for
the Order DTD. Methods of the OrderXml class support referencing and
updating the elements of the Order document.

143

The OrderXml class for order documents

OrderXml(String) constructor

Validates that the Sring argument contains avalid XML Order document, and
then constructs an OrderXml object containing that document. For example,
assume that “doc” isaJavastring variable containing an XML Order
document, perhaps one read from afile:

xml .order.OrderXml ox = new xml.order.OrderXml (doc) ;

OrderXml(date, customerid, server)
The parameters are all String.

This method assumes a set of SQL tables containing Order data. The method
uses JDBC to execute a SQL query that retrieves Order datafor the given date
and customerld. The method then assemblesan XML Order document with the
data.

server identifies the Adaptive Server on which to execute the query.
» If youinvoke the method in aclient environment, specify the server name.

» If you invoke the method in Adaptive Server (in a SQL statement or in
isql), specify either an empty string or the string “ jdbc:default:connection”,
which indicates that the query should be executed on the current Adaptive

Server.
For example:
xml .order.OrderXml ox = new OrderXml (%990704"”, “123",

“antibes:4000?user=sa”) ;

void order2Sql(String ordersTableName, String server)

Extracts the elements of the Order document and stores them in a SQL table
created by the createOrderTable() method. ordersTableNameisthe name of the
target table. server is as described for the OrderxXml constructor. For example,
if oxisaJavavariable of type OrderXml:

ox.order28qgl (“current orders”, “antibes:4000?user=sa”) ;

Thiscall extractsthe elements of the Order document contained in ox, and uses
JDBC to insert the extracted elements into rows and columns of the table
named current_orders.

static void createOrderTable(String ordersTableName, String server)

144

Chapter 8 Specialized XML Processing

static void createOrderTable
(String ordersTableName, String server)

Creates a SQL tablewith columns suitablefor storing Order data: customer_id,
order_date, item_id, quantity, and unit. ordersTableName is the name of the new
table. The server parameter is as described for the Orderxml constructor. For
example:

xml.order.OrderXml.createOrderTable
(“current orders”, “antibes:4000?user=sa”);

String getOrderElement(String elementName)

eementNameis“Date,” “ Customerld,” or “CustomerName.” The method
returns the text of the element. For example, if ox is a Javavariable of type
OrderXml:

String customerId = ox.getOrderElement (“CustomerId”) ;
String customerName = ox.getOrderElement (“*CustomerName”) ;
String date = ox.getOrderElement (“Date”) ;

void setOrderElement
(String elementName, String newValue)

elementName is as described for getOrderElement(). The method sets that
element to newValue. For example, if oxisa Javavariable of type Orderxml:

ox.setOrderElement (“CustomerName”, “Acme Alpha Consolidated”) ;
ox.setOrderElement (“*CustomerId”, “987a”);
ox.setOrderElement (“Date”, “1999/07/05”);

String getltemElement
(int itemNumber, String elementName)

itemNumber isthe index of anitem in the order. elementNameis “Itemid,”
“ItemName,” or “Quantity.” The method returns the text of the item. For
example, if ox is aJavavariable of type Orderxmil:

String itemId = ox.getItemElement (2, “ItemId”);
String itemName = ox.getItemElement (2, “ItemName”) ;
String quantity = ox.getItemElement (2, “Quantity”);

145

The OrderXml class for order documents

void setltemElement
(int itemNumber, String elementName, String newValue

itemNumber and el ementName are as described for the getitemElement method.
setltemElement sets the element to newValue. For example, if oxisaJava
variable of type OrderXml;

ox.setItemElement (2, “ItemId”, “44");
ox.setItemElement (2, “ItemName”, “cord”) ;
ox.setItemElement (2, “Quantity”, “37);

String getltemAttribute
(int itemNumber, elementName, attributeName)

itemNumber and elementName are described as for getlitemElement().
elementName and attributeName are both String. attributeName must be
“unit.” The method returns the text of the unit attribute of the item.

Note Sincethe Order documents currently have only one attribute, the
attributeName parameter is unnecessary. It isincluded toillustrate the general
case.

For example, if ox isa Java variable of type Orderxml
String itemid - ox.getItemAttribute (2, “unit”)

void setltemAttribute (int itemNumber, elementName,
attributeName, newValue)

itemNumber, elementName, and attributeName are as described for
getltemAttribute(). €l ementName, attributeName, and newValue are String. The
method sets the text of the unit attribute of theitem to newValue. For example,
if oxisaJavavariable of type OrderXml;

ox.setItemAttribute (2, “unit”, “13”);

The parametersare all String. The method appends anew item to the document,
with the given element values. For example, if ox is a Java variable of type
OrderXml:

ox.appendItem(“77”, “spacer”, “57, “12");

146

Chapter 8 Specialized XML Processing

void appendltem
(newltemid, newltemName, newQuantity, newUnit)

The parameters are al String. The method appends a new item to the
document, with the given element values. For example, if oxisaJavavariable
of type OrderXML.:

ox.appendItem(“77”, “spacer”, “5”, “12");

void deleteltem(int itemNumber)

itemNumber istheindex of anitem in the order. The method deletes that item.
For example, if ox isa Java variable of type Orderxmi:

ox.deleteltem(2) ;

Storing XML documents

To use XML documents for data interchange in Adaptive Server, you must be
able to store XML documents or the data that they contain in the database. To
determine how best to accomplish this, consider the following:

* Mapping and storage: What sort of correspondence between XML
documents and SQL datais most suitable for your system?

» Client or server considerations: Should the mapping take place on the
client or the server?

e Accessing XML in SQL: How do you want to access the elements of an
XML document in SQL?

Therest of this section discusses each of these considerations; the remainder of
the chapter discusses the classes and methods you can use with XML,
including:

« A simple exampleto illustrate the basics of data storage and exchange of
XML documents

e A generalized example that you can customize for your own XML
documents

147

Storing XML documents

Mapping and storage

There are three basic ways to store XML datain Adaptive Server: element
storage, document storage, or hybrid stor age, which is a mixture of both.

Element storage—in thismethod, you extract dataelementsfrom an XML
document and store them as data rows and columns in Adaptive Server.

For example, using the XML Order document, you can create SQL tables
with columns for the individual elements of an order: Date, Customerld,
CustomerName, Itemld, ItemName, Quantity, and Units. You can then
manage that datain SQL with normal SQL operations:

e Toproduce an XML document for Order data contained in SQL,
retrieve the data, and assemble an XML document with it.

* Tostorean XML document with new Order data, extract the el ements
of that document, and update the SQL tables with that data.

Document storage—in this method, you store an entire XML document in
asingle SQL column.

For example, using the Order document, you can create one or more SQL
tables having acolumn for Order documents. The datatype of that column
could be:

e SQOL text, or
e A generic Javaclass designed for XML documents, or
e Javaclass designed specifically for XML Order documents

Hybrid storage — in this method, you store an XML document in a SQL
column, and also extract some of its data elements into separate columns
for faster and more convenient access.

Again, using the Order example, you can create SQL tables as you would for

document storage, and then include (or later add) one or more columnsto store
elements extracted from the Order documents.

Advantages and disadvantages of storage options

Each storage option has advantages and disadvantages. You must choose the
option or options best for your operation.

148

Chapter 8 Specialized XML Processing

e If you use element storage, all of the datafrom the XML document is
available as normal SQL datathat you can query and update using SQL
operations. However, element storage has the overhead of assembling and
disassembling the XML documents for interchange.

e Document storage eliminates the need for assembling and disassembling
the data for interchange. However, you need to use Java methodsto
reference or update the elements of the XML documents while they arein
SQL, which is slower and less convenient than the direct SQL access of
element storage.

« Hybrid storage bal ances the advantages of element storage and document
storage, but has the cost and complexity of redundant storage of the
extracted data.

Client or server considerations

You can execute Java methods either on a client or on a server, whichisa
consideration for element storage and hybrid storage. Document storage
involves little or no processing of the document.

e Element storage—if you map individual elementsof an XML document to
SQL data, in most cases the XML document is larger than the SQL data.
It is generally more efficient to assemble and disassemble the XML
document on the client and transfer only the SQL data between the client
and the server.

* Hybrid storage — if you store both the complete XML document and
extracted elements, then it is generally more efficient to extract the data
from the server, rather than transfer it from the client.

Creating and populating SQL tables for order data

In this section, we create several tablesthat are designed to contain data from
XML Order documents, so that we can demonstrate techniques for element,
document, and hybrid data storage.

149

Creating and populating SQL tables for order data

Tables for element storage

The following statements create SQL tables customers, orders, and items,
whose columns correspond with the elements of the XML Order documents.

create table customers
(customer id varchar(5) not null unique,
customer name varchar (50) not null)

create table orders
(customer_ id varchar(5) not null,
order date datetime not null,
item id varchar(5) not null,
quantity int not null,
unit smallint default 1)

create table items
(item id wvarchar(5) unique,
item name varchar (20))

These tables need not have been specifically created to accommodate XML
Order documents.

Thefollowing SQL statements popul ate the tableswith the datain the example
XML Order document (see “ A sample XML document” on page 111):

insert into customers valuesg("123", "Acme Alpha")

insert into orders values ("123", "1999/05/07",
"9g7", 5, 1)

insert into orders values ("123", "1999/05/07",
"e54", 3, 12)

insert into orders values ("123", "1999/05/07",
"579", 1, 1)

insert into items values ("987", "Widget")

insert into items values ("654", "Medium connecter")

insert into items values ("579", "Type 3 clasp")

Use select to retrieve data from the tables:

select order_date as Date, c.customer_id as CustomerId,
customer name as CustomerName,
o.item id as ItemId, i.item_name as ItemName,
quantity as Quantity, o.unit as unit
from customers ¢, orders o, items 1
where c.customer id=o.customer id and
o.item id=i.item id

150

Chapter 8 Specialized XML Processing

Date Customerld CustomerName | Itemld ItemName Quantity Unit
July 4 1999 123 Acme Alpha 987 Coupler 5 1
July 4 1999 123 Acme Alpha 654 Connector 3 12
July 4 1999 123 Acme Alpha 579 Clasp 1 1

Tables for document and hybrid storage

The following SQL statement creates a SQL table for storing complete XML
Order documents, either with or without extracted elements (for hybrid
storage).
create table order_docs
(id char(10) unique,
customer id varchar(5) null,

-- For an extracted “CustomerId” element
order doc xml.order.OrderXml)

Using the element storage technique
This section describes the element storage technique for bridging XML and
SQL.

e “Composing order documents from SQL data’ on page 151 discussesthe
composition of an XML Order document from SQL data.

e “Trandating datafrom an XML order into SQL” on page 153 discusses
the decomposition of an XML Order document to SQL data.

Composing order documents from SQL data

In this example, Java methods generate an XML Order document from the
SQL datain the tables created in “ Creating and populating SQL tables for
order data’ on page 149.

A constructor method of the OrderXml class mapsthe data. An example call of
that constructor might be;

new xml.order.OrderXml ("990704",
"antibes:4000?user=sa") ;

ni23mn ,

151

Using the element storage technique

This constructor method uses internal JDBC operations to:

e Execute a SQL query for the order data

* Generate an XML Order document with the data

* Return the OrderXml object that contains the Order document

You can invoke the OrderXml constructor in the client or the Adaptive Server.

» If you invoke the OrderXml constructor in the client, the JDBC operations
that it performs use jConnect to connect to the Adaptive Server and
perform the SQL query. It then reads the result set of that query and
generates the order document on the client.

e If youinvoke the OrderXml constructor in Adaptive Server, the IDBC
operations that it performs use the native JDBC driver to connect to the
current Adaptive Server and perform the SQL query. It then reads the
result set and generates the Order document in Adaptive Server.

Generating an order on the client

Designed to be implemented on the client, main() invokes the constructor of
the OrderXML class to generate an XML Order from the SQL data. That
constructor executes aselect for the given date and customer I D, and assembles
an XML Order document from the result.

import java.io.*;
import util.*;
public class Sgl20rderClient {

public static void main (String args[]) {
try{
xml.order.Order order =
new xml.order.OrderXml ("990704", "123","antibes:4000?user=sa") ;

FileUtil.string2File ("Order-sqgl20rder.xml",order.getXmlText ()) ;
} catch (Exception e) ({
System.out.println("Exception:") ;
e.printStackTrace () ;

Generating an order on the server

Designed for the server environment, the following SQL script invokes the
congtructor of the Orderxml classto generate an XML order from the SQL data:

152

Chapter 8 Specialized XML Processing

declare @order xml.order.OrderXml
select @order =

new xml.order.OrderXml ('990704', '123','")
insert into order docs (id, order doc) values(“3”,
@order)

Translating data from an XML order into SQL

In this section, you extract elements from an XML Order document and store
them in the rows and columns of the Orderstables. The examplesillustratethis
procedure in both server and client environments.

You trandate the elements using the Java method order2Sq|() of the Orderxml
class. Assume that xmlOrder is a Java variable of type OrderxXmil:
xmlOrder.order2Sql(“orders_received”, “antibes:4000?user=sa”);

The order2Sql() call extracts the elements of the XML Order document
contained in variable xmlOrder, and then uses JDBC operations to insert that
datainto the orders_received table. You can call thismethod on the client or on
Adaptive Server:

« Invoked from the client, order2Sq|() extracts the elements of the XML
Order document in the client, uses jConnect to connect to the Adaptive
Server, and then uses the Transact-SQL insert command to place the
extracted data into the table.

« Invoked from the server, order2Sql() extracts the elements of the XML
Order document in the Adaptive Server, uses the native JDBC driver to
connect to the current Adaptive Server, and then use the Transact-SQL
insert command to place the extracted data into the table.

Translating the XML document on the client

import
import
import
import
import

util.*;

xml .order. *;
java.io.*;
java.sqgl.*;
java.util.*;

Invoked from the client, the main() method of the Order2Sq|IClient class creates
atable named orders_received with columns suitable for order data. It then
extracts the elements of the XML order contained in the file Order.xml into
rows and columns of orders received. It performs these actions with calls to
static method OrderXml.createOrderTable() and instance method order2Sql().

153

Using the document storage technique

public class Order2SglClient {
public static void main (String args[]) {

try{
String xmlOrder =

FileUtil.file2String("order.xml") ;
OrderXml.createOrderTable ("orders received",
"antibes:4000?user=sa") ;
xmlOrder.order28gl ("orders received",
"antibes:4000?user=sa") ;
} catch (Exception e) ({
System.out.println("Exception:") ;
e.printStackTrace () ;

}

Translating the XML document on the server

Invoked from the server, the following SQL script invokes the OrderXml
constructor to generate an XML Order document from the SQL tables, and then
invokes the method OX.sgl20rder(), which extracts the Order data from the
generated XML and insertsit into the orders_received table.

declare @xmlorder OrderXml
select @xmlorder = new OrderXml ('19990704', '123','")
select @xmlorders>order2Sql ('orders received', '')

Using the document storage technique

When using the document storage technique, you store a complete XML
document in asingle SQL column.This approach avoids the cost of mapping
the data between SQL and XML when documents are stored and retrieved, but
access to the stored elements can be slow and inconvenient.

Storing XML order documents in SQL columns

This section provides examples of document storage from the client and from
the server.

154

Chapter 8 Specialized XML Processing

Inserting an order document from a client file

Thefollowing command-line call isrepresentative of how you caninsert XML
datainto Adaptive Server from aclient file. It copies the contents of the
Order.xml file (using the -1 parameter) to the Adaptive Server and executesthe
SQL script (using the -Q parameter) using the contents of Order.xml as the
value of the question-mark (?) parameter.

java util.FileUtil -A putstring -I "Order.xml" \
-Q "insert into order docs (id, order doc) \
values (‘'1’, new xml.order.OrderXml (?)) " \
-S "antibes:4000?user=sa"

Note The constructor invocation new xml .order.orderxml Validatesthe
XML Order document.

Inserting a generated order document on the server

Executed on the server, the following SQL command generatesan XML Order
document from SQL data, and immediately inserts the generated XML
document into the column of the order_docs table.

insert into order docs (ID, order doc)
select “2”, new xml.order.OrderXml ("990704", "123",6 "")

Accessing the elements of stored XML order documents

We have created a table named order_docs with a column named order_doc.
Thedatatype of the order_doc column is OrderXml, aJavaclassthat containsan
XML Order document.

The OrderXml class contains several instance methods that et you reference
and update elements of the XML Order document. They are described in“The
OrderXml class for order documents” on page 143.

This section uses these methods to update the order document.

<?xml version="1.0"?>

<!DOCTYPE Order SYSTEM "Order.dtd"s>

<Order>
<Date>1999/07/04</Date>
<CustomerId>123</CustomerId>
<CustomerName>Acme Alpha</CustomerName>
<Item>

155

Using the document storage technique

<ItemId> 987</ItemId>
<ItemName>Coupler</ItemName>
<Quantity>5</Quantity>

</Item><Item>
<ItemId>654</ItemId>
<ItemName>Connecter</ItemName>
<Quantity unit="12">3</Quantity>

</Item><Item>
<ItemId>579</ItemId>
<ItemName>Clasp</ItemName>
<Quantitys>l</Quantity>

</Item>

</Orders>

Each XML Order document has exactly one Date, Customerid, and
CustomerName, and zero or more Items, each of which has an Itemld,
[temName, and Quantity.

Client access to order elements

import java.io.*;
import util.*;

Themain() method of the OrderElements classisexecuted ontheclient. It reads
the Order.xml fileinto alocal variable, and constructs an OrderXml document
from it. The method then extracts the “header” elements (Date, Customerld,
and CustomerName) and the elements of thefirst item of the order, printsthose
elements, and finally updates those elements of the order with new values.

public class OrderElements {
public static void main (Stringl[] args) {

try{

String

xml = FileUtil.file2String("Order.xml") ;

xml.order.OrderXml ox =

new

// Get
String
String
String

// Get
String
String
String
String
System.

156

xml .order.OrderXml (xml) ;

the header elements

cname = ox.getOrderElement ("CustomerName") ;
cid = ox.getOrderElement ("CustomerId") ;
date = ox.getOrderElement ("Date") ;

the elements for item 1 (numbering from 0)

iNamel = ox.getItemElement (1, "ItemName") ;

iIdl = ox.getItemElement (1, "ItemId");

iQl = ox.getItemElement (1, "Quantity");

iU = ox.getItemAttribute(1, "Quantity", "unit");
out.println ("\nBEFORE UPDATE: ")

Chapter 8 Specialized XML Processing

System.out.println("\n "+date+ " "+ cname + " " +cid);
System.out.println("\n "+ iNamel+" "+iIdl+" "
+ 101 + " " + iU + "\n");

// Set the header elements

ox.setOrderElement ("CustomerName", "Best Bakery"
ox.setOrderElement ("CustomerId", "531");
ox.setOrderElement ("Date", "1999/07/31");

// Set the elements for item 1 (numbering from 0)
ox.setItemElement (1, "ItemName", "Flange");
ox.setItemElement (1, "ItemId", "777");
ox.setItemElement (1, "Quantity","3");
ox.setItemAttribute (1, "Quantity", "unit", "13");

//Get the updated header elements

cname = ox.getOrderElement ("CustomerName") ;
cid = ox.getOrderElement ("CustomerId") ;
date = ox.getOrderElement ("Date") ;

// Get the updated elements for item 1

// (numbering from 0)

iNamel = ox.getItemElement (1, "ItemName") ;
iIdl = ox.getItemElement (1, "ItemId");

iQ1 = ox.getItemElement (1, "Quantity");

iU = ox.getItemAttribute(l, "Quantity", "unit");
System.out .println ("\nAFTER UPDATE: ") ;
System.out .println ("\n "tdate+ " "+ cname + " " +cid);
System.out.println("\n "+ iNamel+" "+iIdl+" "

+ 101 + " " + iU + "\n");

//Copy the updated document to another file
FileUtil.string2File ("Order-updated.xml", ox.getXmlText ())

} catch (Exception e) {
System.out .println ("Exception:") ;
e.printStackTrace () ;

}

After implementing the methods in OrderElements, the order document stored
in Order-updated.xml is:

<?xml version="1.0"?>
< !DOCTYPE Order SYSTEM 'Order.dtd's>
<Orders>
<Date>1999/07/31</Date>
<CustomerId>531</CustomerIds>

157

Using the document storage technique

<CustomerName>Best Bakery</CustomerName>

<Item>
<ItemId> 987</ItemId>
<ItemName>Coupler</ItemName>
<Quantity>5</Quantitys>

</Item>

<Item>
<ItemId>777</ItemId>
<ItemName>Flange</ItemName>
<Quantity unit="13">3</Quantity>

</Item>

<Item>
<ItemId>579</ItemId
<ItemName>Clasp</ItemName
<Quantitys>l</Quantitys>

</Item>
</Orders>

Server access to order elements

The preceding example showed uses of get and set methodsin a client
environment. You can also call those methodsin SQL statementsin the server:

select order docs>>getOrderElement ("CustomerId"),
order docs>>getOrderElement ("CustomerName") ,
order doc>>getOrderElement ("Date")
from order docs

select order docs>>getItemElement (1, "ItemId"),
order doc>>getItemElement (1, "ItemName"),
order doc>>getItemElement (1, "Quantity"),
order doc>>getItemAttribute(l, "Quantity", "unit")
from order docs

update order_docs
set order_doc = order_doc>>setItemElement (1, "ItemName",
"Wrench")

update order docs
set order doc = order doc>>setItemElement (2, "ItemId", "967")

select order doc>>getItemElement (1, "ItemName"),
order doc>>getItemElement (2, "ItemId")
from order docs

update order docs
set order doc = order docs>>setItemAttribute (2, "Quantity",

158

Chapter 8 Specialized XML Processing

"U.l’lit", "6")

select order doc>>getItemAttribute (2, "Quantity", "unit")
from order docs

Appending and deleting items in the XML document

The Order class provides methods for adding and removing items from the
Order document.

You can append a new item to the Order document with the appenditem()
method, whose parameters specify Itemld, ItemName, Quantity, and units for
the new item:

update order_docs
set order doc = order doc>>appendItem("864",
IlBracketll’ "3"1 lll2ll)

appenditem() is avoid method that modifies the instance. When you invoke
such amethod in an update statement, you reference it as shown, asif it were
an order-valued method that returns the updated item.

Delete an existing item from the order document using deleteltem().
deleteltem() specifies the number of the item to be deleted. The numbering
begins with zero, so the following command del etes the second item from the
specified row.

update order_docs
set order doc = order doc>>deleteltem(l)
where id = “1”

Using the hybrid storage technique

In the hybrid storage technique, you store the complete XML document in a
SQL column and, at the sametime, store elements of that document in separate
columns. This technique often balances the advantages and disadvantages of
element and document storage.

“Using the document storage technique” on page 154 demonstrates how to
store the entire XML order document in the single column
order_docs.order_doc. Using document storage, you must reference and access
the Customer|d element in thisway:

159

Using the hybrid storage technique

select order doc>>getOrderElement (“CustomerID”) from order docs
where order docs>>getOrderElement (“CustomerID”) > “222”

160

To access Customer|d more quickly and conveniently than with the method
call, but without first translating the Order into SQL rows and columns:

1 Addacolumnto the order_docs table for the customer_id:

alter table order docs
add customer id varchar (5) null

2 Update that new column with extracted customerld values.

update order_docs
set customer id =
order doc>>getOrderElement ("CustomerId")

3 Reference Customerld values directly:

select customer id from order docs
where customer id > “222”

You can also define an index on the column.

Note This technique does not synchronize the extracted customer_id column
with the Customerld element of the order_doc column if you update either
value.

CHAPTER 9 XML for SQL Result Sets

This chapter describes the ResultSetxml class, which alows you to
generate an XML document representing an SQL result set, and to access
and update such an XML document.

Topic Page
The ResultSetXML class 161
Generating a ResultSet in the client 171
Generating aresult set in Adaptive Server 171

The source code for the ResultSetXml classisin thefollowing directories:
e $SBASE/ASE-12_5/sample/JavaSgl (UNIX)
e %SYBASE%\ASE-12 5\sample\Javasgl (Windows NT)

You can use the ResultSetXML classto process SQL result setswith XML
and as an exampl e of how to write Java code for accessing XML. Chapter
8, “Specialized XML Processing,” provides an additional example of
Java code.

The ResultSetXML class

The ResultSetXml classis a subclass of the JXml class, which validates a
document with the XML ResultSet DTD, and also provides methods for
accessing and updating the elements of the contained XML ResultSet
document.

ResultSetXml(String)

Validatesthat the argument containsavalid XML ResultSet document and
constructs a ResultSetXml object containing that document. For example,
if doc isaJava String variable containing an XML ResultSet document,
read from afile:

161

The ResultSetXML class

xml.resultset.ResultSetXml rsx =
new xml.resultset.ResultSetXml (doc) ;

Constructor: ResultSetXml
(query, cdataColumns, colNames, server)

* The parametersare all String.
e queryisany SQL query that returns aresult set.

» server identifiesthe Adaptive Server on which to execute the query. If you
invoke the method in a client environment, specify the server name.

If you invoke the method in an Adaptive Server (in a SQL statement or
isql), specify either an empty string or the string “ jdbc:default:connection,”
indicating that the query should be executed on the current Adaptive
Server

» cdata columnsindicateswhich columns should be XML CDATA sections.

» colNames indicates whether the resulting XML should specify “name”
attributes in the “ Column” elements

ResultXml example

The method connectsto the server, executes the query, retrieves the SQL result
set, and constructs a ResultSetXml object with that result set.

For example:

xml.resultset.ResultSetXml rsx =
new xml.resultset.ResultSetXml
(“*select 1 as ‘a’, 2 as ‘b’, 3 ", “none”, “yes”,
“antibes:4000?user=sa”) ;
This constructor call connects to the server specified in the last argument,
evaluates the SQL query given in the first argument, and returns an XML
ResultSet containing the data from the result set of the query.

String toSqlScript
(resultTableName, columnPrefix, goOption)

* The parametersare all String.

162

Chapter 9 XML for SQL Result Sets

resultTableName is the table name for the create and insert statements.
(SQL result sets do not specify atable name because they may be derived
from joins or unions.)

columnPrefix is the prefix to use in generated column names, which are
needed for unnamed columns in the result set.

goOption indicates whether the script is to include the go commands,
which are required inisqgl, not in JDBC.

Themethod returnsa SQL script with acreate statement and alist of insert
statements that create the result set data again.

For example, if rsxis aJavavariable of type ResultSetXml:

rsx>>toSglScript (“systypes copy”, “column ”, “yes”)

String getColumn(int rowNumber, int columnNumber)

rowNumber isthe index of arow in the result set.

columnNumber is the index of a column of the result set. The method
returns the text of the specified column.

For example, if rsxis aJava variable of type ResultSetXml:

select rsx>>getColumn(3, 4)

String getColumn(int rowNumber, String columnName)

rowNumber isthe index of arow in the result set.

columnName is the name of a column of the result set.

The method returns the text of the specified column.

For example, if rsxis aJava variable of type ResultSetXml:

void setColumn

select rsx>>getColumn (3, “name”)

(int rowNumber, int columnNumber, newValue)

rowNumber and columnNumber are as described for getColumn().

163

The ResultSetXML class

The method sets the text of the specified column to newValue.
For example, if rsxis a Javavariable of type ResultSetXml:

select rsx = rsx>>setColumn (3, 4, “new value”)

void setColumn
(int rowNumber, String columnName, newValue)

rowNumber and columnName are as described for getColumn().
The method sets the text of the specified column to newValue.
For example, if rsxis a Javavariable of type ResultSetXml:

select rsx = rsx>>setColumn (3, “name”, “new value”)

Boolean allString
(int ColumnNumber, String compOp, String comparand)

* columnNumber istheindex of acolumn of the result set.
e compOpisaSQL comparison operator (<, >, =, 1=, <=, >=),
e comparand is a comparison value.

The method returns aval ue indicating whether the specified comparisonistrue
for all rows of the result set.

For example, if rsxis a Java variable of type ResultSetXml:
if rsx>>allString (3, “<”, “compare value”)..

This condition istrueif in the result set represented by rsx, for al rows, the
value of column 3 islessthan “compare value.” Thisisa String comparison.
Similar methods can be used for other datatypes.

Boolean someString
(int columnNumber, String compOp, String comparand)

e columnNumber isthe index of acolumn of the result set.
e compOp isaSQL comparison operator (<, >, =, I=, <=, >=).

e comparand is a comparison value.

164

Chapter 9 XML for SQL Result Sets

The method returns aval ueindicating whether the specified comparisonistrue
for some row of the result set.

For example, if rsxis a Java variable of type ResultSetXml:
if rxss>someString(3, “<%, “compare value”)

This condition istrueif in the result set represented by rsx, for some row, the
value of column 3 islessthan “compare value.”

A customizable example for different result sets

create

insert
insert
insert

table orders
(customer id

This section demonstrates how you can store XML documents or the data that
they contain in an Adaptive Server database using the ResultSet class and its
methods for handling result sets. You can customize the ResultSet class for
your database application.

Contrast the ResultSet document type and the Order document type:

e The Order document typeis a simplified example designed for a specific
purchase-order application, and its Java methods are designed for a
specific set of SQL tables for purchase order data. See “ The OrderXml
classfor order documents’ on page 143.

e TheResultSet document type is designed to accommodate many kinds of
SQL result sets, and the Java methods designed for it include parameters
to accommodate different kinds of SQL queries.

For this example, you create and work with XML ResultSet documents that
contain the same data as the XML Order documents.

First, create the orders table and its data:

varchar (5) not null,

order date datetime not null,
item_id varchar(5) not null,

quantity int

not null,

unit smallint default 1)

into orders wvalues ("123", "1999/05/07", "987", 5, 1)
into orders wvalues ("123", "1999/05/07", "654", 3, 12)
into orders wvalues ("123", "1999/05/07", "579", 1, 1)

Also, create the following SQL table to store complete XML ResultSet
documents:

165

A customizable example for different result sets

create table resultset docs
(id char(5),
rs_doc xml.resultsets.ResultSetXml)

The ResultSet document type

ResultSet documents consist of ResultSetMetaData followed by ResultSetData,
as shown in the following general form:

<?xml version="1.0"?>
<IDOCTYPE ResultSet SYSTEM 'ResultSet.dtd"'>
<ResultSet>

<ResultSetMetaData>

</ResultSetMetaData>
<ResultSetData>

</ResultSetData>
</ResultSet>

The ResultSetMetaData portion of an XML ResultSet consists of the SQL
metadata returned by the methods of the JDBC ResultSet class. The
ResultSetMetaData for the example result set is:

<ResultSetMetaData

getColumnCount="7">

<ColumnMetaData
getColumnDisplaySize="25"
getColumnLabel="Date"
getColumnName="Date"
getColumnType="93"
getPrecision="0"
getScale="0"
isAutoIncrement="false"
isCurrency="false"
isDefinitelyWritable="false"
isNullable="false"

isSigned="false" />

<ColumnMetaData
getColumnDisplaySize="5"
getColumnLabel="CustomerId"
getColumnName="CustomerId"
getColumnType="12"
getPrecision="0"
getScale="0"

166

Chapter 9 XML for SQL Result Sets

isAutoIncrement="false"
isCurrency="false"
isDefinitelyWritable="false"
isNullable="false"
isSigned="false" />
<ColumnMetaData
getColumnDisplaySize="50"
getColumnLabel="CustomerName"
getColumnName="CustomerName"
getColumnType="12"
getPrecision="0"
getScale="0"
isAutoIncrement="false"
isCurrency="false"
isDefinitelyWritable="false"
isNullable="false"
isSigned="false" />
<ColumnMetaData
getColumnDisplaySize="5"
getColumnLabel="ItemId"
getColumnName="ItemId"
getColumnType="12"
getPrecision="0"
getScale="0Q"
isAutoIncrement="false"
isCurrency="false"
isDefinitelyWritable="false"
isNullable="false"
isSigned="false" />
<ColumnMetaData
getColumnDisplaySize="20"
getColumnLabel="ItemName"
getColumnName="ItemName"
getColumnType="12"
getPrecision="0"
getScale="Q"
isAutoIncrement="false"
isCurrency="false"
isDefinitelyWritable="false"
isNullable="false"
isSigned="false" />
<ColumnMetaData
getColumnDisplaySize="11"
getColumnLabel="Quantity"
getColumnName="Quantity"
getColumnType="4"

167

A customizable example for different result sets

getPrecision="0"
getScale="0"
isAutoIncrement="false"
isCurrency="false"
isDefinitelyWritable="false"
isNullable="false"
isSigned="true" />
<ColumnMetaData
getColumnDisplaySize="6"
getColumnLabel="unit"
getColumnName="unit"
getColumnType="5"
getPrecision="0"
getScale="0"
isAutoIncrement="false"
isCurrency="false"
isDefinitelyWritable="false"
isNullable="false"
isSigned="true" />
</ResultSetMetaDatas>

The names of the attributes of ColumnMetaData are simply the names of the
methods of the JDBC ResultSetMetaData class, and the values of those
attributes are the values returned by those methods.

The ResultSetData portion of an XML ResultSet document isalist of Row
elements, each having alist of Column elements. The text value of a Column
element isthe value returned by the JDBC getString() method for the column.
The ResultSetData for the exampleis:

<ResultSetDatas>

<Row>
<Column name="Date">1999-07-04 00:00:00.0</Column>
<Column name="CustomerId">123</Column>
<Column name="CustomerName">Acme Alpha</Column>
<Column name="ItemId">987</Column>
<Column name="ItemName">Coupler</Columns>
<Column name="Quantity">5</Column>
<Column name="unit">1</Column>

</Row>

<Row>
<Column name="Date">1999-07-04 00:00:00.0</Column>
<Column name="CustomerId">123</Column>
<Column name="CustomerName">Acme Alpha</Column>
<Column name="ItemId">654</Column>
<Column name="ItemName">Connecter</Column>
<Column name="Quantity">3</Column>

168

Chapter 9 XML for SQL Result Sets

<Column name="unit">12</Column>

</Row>

<Row>
<Column name="Date">1999-07-04 00:00:00.0</Column>
<Column name="CustomerId">123</Column>
<Column name="CustomerName">Acme Alpha</Columns>
<Column name="ItemId">579</Column>
<Column name="ItemName">Clasp</Columns>
<Column name="Quantity">1l</Columns>
<Column name="unit">1l</Column>

</Row>

</ResultSetData>
</ResultSet>

The XML DTD for the ResultSetXml document type

The DTD for the XML ResultSet document typeis:

<IELEMENT ResultSet (ResultSetMetaData ,
ResultSetData)>

<IELEMENT ResultSetMetaData (ColumnMetaData)+>

<IATTLIST ResultSetMetaData getColumnCount CDATA
#IMPLIED>

<IELEMENT ColumnMetaData EMPTY>

<IATTLIST ColumnMetaData
getCatalogName CDATA #IMPLIED
getColumnDisplaySize CDATA #IMPLIED
getColumnLabel CDATA #IMPLIED
getColumnName CDATA #IMPLIED
getColumnType CDATA #REQUIRED
getColumnTypeName CDATA #IMPLIED
getPrecision CDATA #IMPLIED
getScale CDATA #IMPLIED
getSchemaName CDATA #IMPLIED
getTablename CDATA #IMPLIED
isAutolncrement (true|false) #IMPLIED
isCaseSensitive (truelfalse) #IMPLIED
isCurrency (true|false) #IMPLIED
isDefinitelyWritable (true|false) #IMPLIED
isNullable (true|false) #IMPLIED
isReadOnly (true|false) #IMPLIED
isSearchable (true|false) #IMPLIED
isSigned (true|false) #IMPLIED
isWritable (true|false) #IMPLIED
>

<IELEMENT ResultSetData (Row)*>
<IELEMENT Row (Column)+>
<IELEMENT Column (#PCDATA)>
<IATTLIST Column

169

A customizable example for different result sets

null (true | false) "false"
name CDATA #MPLIED

Using the element storage technique

This section uses the orders table to il lustrate mapping between SQL dataand
XML ResultSet documents.

In“Composing a ResultSet XML document from the SQL data’ on page 170,
wegeneratean XML ResultSet document from the SQL data, assuming that we
arethe originator of the XML ResultSet document. We use the resulting XML
ResultSet document to describe the ResultSet DTD.

Composing a ResultSet XML document from the SQL data

170

You can use Java methods to evaluate a given query and generate an XML
result set with the query’s data. This example uses a constructor method of the
ResultSetXml class. For example:

new xml.resultset.ResultSetXml
(“select 1 as ‘a’, 2 as ‘b’, 3 ”, “none”,
“yes”, “antibes:4000?user=sa”) ;

The method usesinternal JDBC operations to execute the argument query, and
then constructs the XML ResultSet for the query’s data.

We can invoke this constructor in aclient or in the Adaptive Server:

» If youinvoke the constructor in a client, specify a server parameter that
identifies the Adaptive Server to be used when evaluating the query. The
query is evaluated in the Adaptive Server, but the XML document is
assembled in the client.

» If youinvoke the constructor in the Adaptive Server, specify anull value
or jdbc: default: connection for the server. The query is evaluated in the
current server and the XML document is assembled there.

Chapter 9 XML for SQL Result Sets

Generating a ResultSet in the client

The main() method of the OrderResultSetClient classisinvoked in aclient
environment. main() invokes the constructor of the ResultSetXml class to
generate an XML ResultSet. The constructor executes the query, retrievesits
metadata and data using JDBC ResultSet methods, and assembles an XML
ResultSet document with the data.

import java.io.*;
import util.=*;
public class OrderResultSetClient {
public static void main (Stringl[] args) {
try(
String orderQuery = "select order date as Date,”
+ "c.customer id as CustomerId, "
"customer name as CustomerName, "
"o.item id as ItemId, i.item name as ItemName, "
"quantity as Quantity, o.unit as unit "
"from customers c, orders o, items i "
"where c.customer id=o.customer id and
"o.item id=i.item id "
xml.resultset.ResultSetXml rsx
= new xml.resultset.ResultSetXml (orderQuery,
"none", "yes", "external",
"antibes:4000?user=sa") ;
FileUtil.string2File ("OrderResultSet.xml", rsx.getXmlText ()) ;
} catch (Exception e) {
System.out.println ("Exception:") ;
e.printStackTrace() ;

+ + + + + o+

Generating a result set in Adaptive Server

Thefollowing SQL script invokes the constructor of the ResultSetXml classin
aserver environment:

declare @rsx xml.resultset.ResultSetXml
select @rsx = new xml.resultset.ResultSetXml

(*select 1 as ‘a’, 2 as ‘b’, 3 ”, “none”, “yes”, “");
insert into resultset docs values (“1”, @rsx)

171

Translating the XML ResultSet document in the client

Translating the XML ResultSet document in the client

The main() method of ResultSetXml is executed in a client environment. It
copies the file Order ResultSet.xml, constructs a ResultSetXml object
containing the contents of that file, and invokesthetoSqlScript() method of that
object to generate a SQL script that re-creates the data of the result set. The
method stores the SQL script in the file order-resultset-copy.sql.

import java.io.*;
import jcs.util.*;
public class ResultSet2Sqgl({
public static void main (Stringl[] args) {
try(
String xml = FileUtil.file2String("OrderResultSet.xml") ;
xml.resultset.ResultSetXml rsx
= new xml.resultset.ResultSetXml (xml) ;
String sqglScript
= rsx.toSqglScript ("orderresultset copy", "col ",'"no");
FileUtil.string2File ("order-resultset-copy.sql",sqglScript) ;
ExecSqgl.statement (sgqlScript, *antibes:4000?user=sa”) ;
} catch (Exception e) ({
System.out.println ("Exception:") ;
e.printStackTrace () ;

Thisisthe SQL script generated by ResultSet2Sql.

set quoted identifier on

create table orderresultset copy (
Date datetime not null ,
CustomerId varchar (5) not null ,
CustomerName varchar (50) not null ,
ItemId varchar (5) not null ,
ItemName varchar (20) not null ,
Quantity integer not null ,
unit smallint not null

)

insert into orderresultset copy values (

'1999-07-04 00:00:00.0", '123"',

'Acme Alpha', '987', 'Widget', 5, 1)
insert into orderresultset copy values (

'1999-07-04 00:00:00.0", '123"',

'Acme Alpha', '654",

'Medium connecter', 3, 12)

insert into orderresultset copy values (

172

Chapter 9 XML for SQL Result Sets

'1999-07-04 00:00:00.0", '123"',
'Acme Alpha', '579"', 'Type 3 clasp', 1, 1)

The SQL script includes the set quoted_identifier on command for those cases
where the generated SQL uses quoted identifiers.

Translating the XML ResultSet Document in Adaptive
Server

Thefollowing SQL script invokesthe toSglScript() method in Adaptive Server
and then creates and popul ates a table with a copy of the result set data.

declare @rsx xml.resultset.ResultSetXml

select @rsx = rs_doc from resultset docs where id=1

select @script = @rsx>>toSqlScript (“resultset copy”,
“column ”, “no”)

declare @I integer

select @I = util.ExecSqgl.statement (@script, “”)

Using the document storage technique

This section shows examples of storing XML ResultSet documentsin single
SQL columns and techniques for referencing and updating the column
elements.

Storing an XML ResultSet document in a SQL column

Thefollowing SQL script generates an XML ResultSet document and storesit
inatable:

declare @query java.lang.StringBuffer
select @query = new java.lang.StringBuffer ()
-- The following “appends” build up a SQL select statement in
the e@query variable
-- We use a StringBuffer, and the append method, so that the
@query can be as long as needed.
select @querys>>append("select order date as Date,
c.customer id as CustomerId, ")

173

Using the document storage technique

select @querys>>append("customer name as CustomerName, ")
select @query>>append("o.item id as ItemId, i.item name as ItemName, ")
select @querys>append("quantity as Quantity, o.unit as unit ")
select @querys>append("from customers c, orders o, items 1 ")
select @querys>>append ("where c.customer id=o.customer id and"
+ "o.item id=i.item id ")
declare @rsx xml.resultset.ResultSetXml
select @rsx = new xml.resultset.ResultSetXml
(@query>>toString(), 'none', 'yes',6 '')
insert into resultset docs values("1l", @rsx)

Accessing the columns of stored ResultSet documents

In*“Storing an XML ResultSet document in aSQL column” on page 173, you
inserted a complete XML ResultSet document into the rs_doc column of the
resultset_docs table. This section shows examples of using methods of the
ResultSetXml classto reference and update a stored ResultSet.

A client-side call

The main() method of the ResultSetElements class is executed in aclient
environment. It copies the file Order ResultSet.xml, constructs a ResultSetXml
document from it, and then accesses and updates the columns of the ResultSet.

import java.io.*;
import util.*;
public class ResultSetElements ({
public static void main (Stringl[] args) {
try(
String xml =
FileUtil.file2String ("OrderResultSet.xml") ;
xml.resultset.ResultSetXml rsx
= new xml.resultset.ResultSetXml (xml) ;
// Get the columns containing customer and date info
String cname = rsx.getColumn (0, "CustomerName") ;
String cid = rsx.getColumn (0, "CustomerId") ;
String date = rsx.getColumn (0, "Date");
// Get the elements for item 1 (numbering from 0)
String iNamel = rsx.getColumn(l, "ItemName") ;
String iIdl = rsx.getColumn(l, "ItemId");
String iQl = rsx.getColumn(l, "Quantity");

String iU = rsx.getColumn(1, "unit") ;
System.out.println ("\nBEFORE UPDATE: ") ;
System.out.println("\n "+date+ " "+ cname + " " +

174

Chapter 9 XML for SQL Result Sets

cid) ;
System.out.println("\n "+ iNamel+" "+iIdl+" "
+ 1iQ1 + " " 4+ iU + "\n");
// Set the elements for item 1 (numbering from 0)
rsx.setColumn(l, "ItemName", "Flange");
rsx.setColumn (1, "ItemId", "777");
rsx.setColumn(l, "Quantity","3");
rsx.setColumn (1, "unit", "13");
// Get the updated elements for item 1 (numbering
from 0) iNamel = rsx.getColumn(l, "ItemName") ;

iIdl = rsx.getColumn(l, "ItemId");
iQ1 = rsx.getColumn(l, "Quantity");

iU = rsx.getColumn (1, "unit") ;
System.out.println ("\nAFTER UPDATE: ") ;
System.out.println("\n "+date+ " "4+ cname + " " +
cid) ;
System.out.println ("\n "+ iNamel+" "+iIdil+" "
+ 101 + " " + iU + "\n");

// Copy the updated document to another file

FileUtil.string2File ("Order-updated.xml",
rsx.getXmlText ()) ;

} catch (Exception e) {

System.out.println ("Exception:") ;

e.printStackTrace () ;

}

The FileUtil.string2File() method stores the updated ResultSet in the file Order-
updated.xml. The ResultSetM etaData of the updated document is unchanged.
The updated ResultSetData of the document is as follows with new valuesin
the second item.

<ResultSetDatax>

<Row>
<Column name="Date">1999-07-04 00:00:00.0</Column>
<Column name="CustomerId">123</Column>
<Column name="CustomerName">Acme Alpha</Columns>
<Column name="ItemId">987</Column>
<Column name="ItemName">Widget</Column>
<Column name="Quantity">5</Column>
<Column name="unit">1l</Columns>

</Row>

<Row>
<Column name="Date">1999-07-04 00:00:00.0</Column>
<Column name="CustomerId">123</Column>

175

Using the document storage technique

<Column name="CustomerName">Acme Alpha</Column>
<Column name="ItemId">777</Columns>
<Column name="ItemName">Flange</Column>
<Column name="Quantity">3</Column>
<Column name="unit">13</Column>

</Row>

<Row>
<Column name="Date">1999-07-04 00:00:00.0</Column>
<Column name="CustomerId">123</Column>
<Column name="CustomerName">Acme Alpha</Column>
<Column name="ItemId">579</Column>
<Column name="ItemName">Type 3 clasp</Column>
<Column name="Quantity">1l</Column>
<Column name="unit">1l</Column>

</Row>

</ResultSetDatas>
</ResultSet>

A server-side script

Using the SQL scriptin “Storing an XML ResultSet document in a SQL
column” on page 173, you stored complete XML ResultSet documentsin the
rs_doc column of the resultset_docs table. The following SQL commands,
executed in aserver environment, reference and update the columns contained
in those documents.

You can select columns by name or by number:

176

» Select the columns of row 1, specifying columns by name:

select rs_doc>>getColumn(l, "Date"),
rs_doc>>getColumn(1l, "CustomerId"),
rs_doc>>getColumn (1, "CustomerName"),
rs_doc>>getColumn(1l, "ItemId"),
rs_doc>>getColumn(l, "ItemName"),
rs_doc>>getColumn(l, "Quantity"),

rs_doc>>getColumn (1,

from resultset_docs

Ilunitll)

e Select the columns of row 1, specifying columns by number:

select rs_ doc>>getColumn (1,

O)I

rs_doc>>getColumn(l, 1),
rs_doc>>getColumn(l, 2),
rs_doc>>getColumn(l, 3),
rs_doc>>getColumn(l, 4),
rs_doc>>getColumn(l, 5),

Chapter 9 XML for SQL Result Sets

rs_doc>>getColumn(l, 6)
from resultset docs

Specify some nonexisting columns and rows. Those references return null

values.

Select rs docs>>getcolumn(l, "itemid"),
rs_doc>>getcolumn (1, "xxx"),
rs_doc>>getcolumn(l, "Quantity"),
rs_doc>>getcolumn (99, "unit"),

rs_doc>>getColumn(l, 876)
from resultset docs

Update columns in the stored ResultSet document:

update resultset_ docs
set rs_doc = rs_doc>>setColumn(l, "ItemName",
“Wrench”)
where id= “1”
update resultset docs
set rs doc = rs_doc>>setColumn(l, "ItemId", "967")
where id="1"
update resultset_docs
set rs doc = rs _doc>>setColumn(l, "unit", "6")
where id="1"
select rs_doc>>getColumn(l, "ItemName"),
rs_doc>>getColumn(l, "ItemId"),
rs_doc>>getColumn (1, "unit")
from resultset_docs
where id="1"

Quantified comparisons in stored ResultSet documents

ResultSetXml contains two methods, allString() and someString(), for
quantified searches on columns of a ResultSetXML document. To illustrate
these two methods, first create some example rows in the order_resultstable.

The order_results table has been initialized with one row, whoseid =“1” and
whose rs_doc column contains the original Order used in all examples.

The following statements copy that row twice, assigning id values of “2” and
“3" tothenew rows. Theorder_results table now hasthreerows, withid column
valuesof “1,” “2,” and “3" and the original Order.

insert into resultset docs(id, rs_doc)
select "2", rs doc
from resultset_docs where id="1"

177

Using the document storage technique

insert into resultset docs (id, rs_doc) select "3", rs doc
from resultset docs where id="1"

Thefollowing statements modify the row with anid column value of “1” so that
all three items have Itemlds of “100”, 110", and “120":

update resultset_docs

set rs _doc = rs doc>>setColumn(0, "ItemId", "100")
where id="1"
update resultset docs

set rs_doc = rs_docs>>setColumn(l, "ItemId", "110")
where id="1"
update resultset_docs

set rs _doc = rs doc>>setColumn(2, "ItemId", "120")
where id="1"

The following update statement modifies the row with id =“3" so that its
second item (from 0) has an Itemlid of “999":

update resultset_docs
set rs_doc = rs_doc>>setColumn(2, "ItemId", "999")
where id="3"

The following select statement displays the id column and the three itemid
values for each row:

select id, rs_ doc>>getColumn (0, "ItemId"),
rs_doc>>getColumn (1, "ItemId"),
rs_doc>>getColumn (2, "ItemId")
from resultset_docs

The results of the select are:

1 100 110 120
2 987 654 579
3 987 654 999

Note the following:
* Therow withid of “2" isthe original Order data.

 Therow withid of “1" has been modified so that all Itemlds for that row
are less than “200.”

Therow withid of “3" has been modified so that some ItemId for that row
is greater than or equal to “9999”

The following expresses these quantifications with the allString() and
someString() methods:

select id, rs doc>>allString(3, "<", "200") as “ALL test”

178

Chapter 9 XML for SQL Result Sets

from resultset docs

select

id, rs_docs>>someString(3, ">=", "999") as “SOME test”

from resultset_docs

select
where
select
where

select

id as “id for ALL test” from resultset_docs

rs_doc>>allString(3, "<", "200")>>booleanValue() =1
id as “id for SOME test” from resultset docs
rs_doc>>someString (3, ">=", "999")>>booleanValue() = 1

The first two statements show the quantifier in the select list and give these

results:
ID “all” test “some” test
1 true false
false false
3 false true

Thelast two statements show the quantifier in the where clause and give these
results:

 IDfor“al” test="3"
e IDfor “some” test ="1"
In the examples with the quantifier method in the where clause, note that:

e Thewnhere clause examples compare the method results with an integer
value of 1. SQL does not support the Boolean datatypes as a function
value, but instead treats Boolean as equivalent to integer values 1 and O,
for true and false.

e Thewnhere clause examples use the booleanVvalue() method. The allString(
) and someString() methods return type java.lang.Boolean, which is not
compatiblewith SQL integer. The JavabooleanValue() method returnsthe
simple Boolean value from the Boolean object, which is compatible with
SQL integer. This behavior isaresult of merging the SQL and Javatype
systems.

The quantifier methodsreturn java.lang.Boolean instead of simply Javaboolean
so that they can return null when the columnis out of range, whichisconsistent
with the SQL treatment of out-of-range conditions.

The following statements show quantifier references that specify column 33,
which does not exist in the data:

id, rs_doc>>allString(33, "<", "200") as “ALL test”

from resultset_docs

select
where

id as “id for ALL test” from resultset_docs
rs_doc>>allString (33, "<", "200")>>booleanValue() = 1

179

Using the document storage technique

1D “all” test

1 NULL
NULL

3 NULL

The ID for the “al” test = (empty).

180

ciarTER 10 Debugging Java in the Database

This chapter describes the Sybase Java debugger and how you can use it
when developing Javain Adaptive Server.

Name Page
Introduction to debugging Java 181
Using the debugger 182
A debugging tutorial 189

Introduction to debugging Java

You can use the Sybase Java debugger to test Java classes and fix
problems with them.

How the debugger works

The Sybase Java debugger is a Java application that runs on aclient
machine. It connects to the database using the Sybase jConnect JDBC
driver.

The debugger debugs classes running in the database. You can step
through the source code for the files as long as you have the Java source
code onthedisk of your client machine. (Remember, the compiled classes
areinstalled in the database, but the source code is not).

Requirements for using the Java debugger
To use the Java debugger, you need:

e A Javaruntime environment such as the Sun Microsystems Java
Runtime Environment, or the full Sun Microsystems JDK on your
machine.

181

Using the debugger

e The source code for your application on your client machine.

What you can do with the debugger
Using the Sybase Java debugger, you can:

» Trace execution — Step line by line through the code of a class runningin
the database. You can also look up and down the stack of functions that
have been called.

* Set breakpoints— Run the code until you hit a breakpoint, and stop at that
point in the code.

» Set break conditions— Breakpointsinclude lines of code, but you can also
specify conditionswhen the code isto break. For example, you can stop at
aline thetenth time it is executed, or only if avariable has a particular
value. You can also stop whenever a particular exception isthrown in the
Java application.

* Browse classes— You can browse through the classes installed into the
database that the server is currently using.

* Inspect and set variables — You can inspect the values of variables alter
their value when the execution is stopped at a breakpoint.

* Inspect and break on expressions— You can ingpect the value of awide
variety of expressions.

Using the debugger

This section describes how to use the Java debugger. The next section provides
asimpletutorial.

Starting the debugger and connecting to the database

The debugger isthe JAR file Debug.jar, instaled in your Adaptive Server
installation directory in $SYBASE/$SYBASE_ASE/debugger. If itisnot already
present, add thisfile as the first element to your CLASSPATH environment
variable.

182

Chapter 10 Debugging Java in the Database

Debug.jar contains many classes. To start the debugger you invoke the
sybase.vm.Debug class, which has amain() method.You can start the debugger
in three ways:

* Runthejdebug script located in $SYBASE/$SYBASE_ASE/debugger.

“ A debugging tutorial” on page 189 provides a sample debugging session
using the jdebug script.

¢ From the command line, enter:
java sybase.vm.Debug

In the Connect window, enter a URL, user login hame, and password to
connect to the database.

e From Sybase Central:

a Start Sybase Central and open the Utilities folder, under Adaptive
Server Enterprise.

b Double-click the Java debugger icon in the right panel.

¢ Inthe Connect window, enter aURL, user login name, and password
to connect to the database.

Compiling classes for debugging

Java compilers such asthe Sun Microsystems javac compiler can compile Java
classes at different levels of optimization. You can opt to compile Java code so
that information used by debuggersisretained in the compiled classfiles.

If you compileyour source codewithout using switchesfor debugging, you can
still step through code and use breakpoints. However, you cannot inspect the
values of local variables.

To compile classes for debugging using the javac compiler, use the -g option:

javac -g ClassName.java

Attaching to a Java VM

When you connect to a database from the debugger, the Connection window
shows all currently active JavaVMs under the user login name. If there are
none, the debugger goes into wait mode. Wait mode works like this:

183

Using the debugger

The Source window

The debugger windows

184

Each time anew Java VM is started, it showsup inthelist.

You may choose either to debug the new Java VM or to wait for another
one to appear.

Once you have passed on a Java VM, you lose your chance to debug that
Java VM. If you then decide to attach to the passed Java VM, you must
disconnect from the database and reconnect. At thistime, the JavaVM
appears as active, and you can attach to it.

The Source window:

Displays Java source code, with line numbers and breakpoint indicators
(an asterisk in the left column).

Displays execution statusin the status box at the bottom of the window.

Provides access to other debugger windows from the menu.

The debugger has the these windows:

Breakpoints window — Displaysthe list of current breakpoints.
Calls window — Displays the current call stack.

Classes window — Displays alist of classes currently loaded in the Java
VM. In addition, thiswindow displays alist of methods for the currently
selected class and alist of static variablesfor the currently selected class.
In this window you can set breakpoints on entry to a method or when a
static variable is written.

Connection window — The Connection window is shown when the
debugger isstarted. You can display it againif you wish to disconnect from
the database.

Exceptions window — You can set a particular exception on which to
break, or choose to break on al exceptions.

Inspection window — Displays current static variables, and allows you to
modify them. You can also inspect the value of a Java expression, such as
the following:

e Local variables

Chapter 10 Debugging Java in the Database

o Static variables

e Expressions using the dot operator

e Expressions using subscripts|]

e Expressions using parentheses, arithmetic, or logical operators.
For example, the following expressions could be used:

[i] .field

x[1
q+ 1
i==7
(i 1

i+ 1)*3

e Localswindow — Displays current local variables, and allows you to
modify them.

e Status window — Displays messages describing the execution state of the
JavaVM.

Options

The complete set of options for stepping through source code are displayed on
the Run menu. They include the following:

Function Shortcut key Description

Run F5 Continue running until
the next breakpoint, until
the Stop itemis selected,
or until execution
finishes.

Step Over F7 or Space Steptothenextlineinthe
current method. If the
line steps into a different
method, step over the
method, not into it. Also,
step over any breakpoints
within methods that are
stepped over.

Step Into F8ori Step to the next line of
code. If theline stepsinto
adifferent method, step
into the method.

185

Using the debugger

Function Shortcut key Description

Step Out F11 Complete the current
method, and break at the
next line of the calling
method.

Stop Break execution.

Run to Selected F6 Run until the currently
selected lineis executed
and then break.

Home F4 Select the line where the

execution is broken.

Setting breakpoints

When you set abreakpoint in the debugger, the JavaVM stops execution at that
breakpoint. Once execution is stopped, you can inspect and modify the values
of variablesand other expressionsto better understand the state of the program.
You can then trace through execution step by step to identify problems.

Setting breakpoints in the proper placesis akey to efficiently pinpointing the
problem execution steps.

The Javadebugger allowsyou to set breakpoints not only on aline of code, but
on many other conditions. This section describes how to set breakpoints using
different conditions.

Breaking on aline number

186

When you break on aparticular line of code, execution stopswhenever that line
of code is executed.

To set a breakpoint on a particular line:
* Inthe Source window, select the line and press F9.
Alternatively, you can double-click aline.

When a breakpoint is set on aline number, the breakpoint is shown in the
Source window by an asterisk in the left column. If the Breakpointswindow is
open, the method and line number is displayed in the list of breakpoints.

You can toggle the breakpoint on and off by repeatedly double-clicking or
pressing FO.

Chapter 10 Debugging Java in the Database

Breaking on a static method

When you break on a method, the break point is set on thefirst line of codein

the method that contains an executable statement.

To set a breakpoint on a static method:

1 From the Source window, choose Break— New. The Break At window is
displayed.

2 Enter the name of a method in which you wish execution to stop. For
example:

JDBCExamples.selecter

stops execution whenever the JIDBCExamples.selecter() method isentered.

When a breakpoint is set on amethod, the breakpoint is shown in the Source
window by an asterisk in the left column of the line where the breakpoint
actually occurs. If the Breakpointswindow is open, the method is displayed in
the list of breakpoints.

Using counts with breakpoints

If you set abreakpoint on aline that isin aloop, or in amethod that is
frequently invoked, you may find that the line is executed many times before
the condition you areredlly interested in takes place. The debugger alowsyou
to associate a count with a breakpoint, so that execution stops only when the
line is executed a set number of times.

To associate a count with a breakpoint:

1 From the Source window, select Break— Display. The Breakpoints
window is displayed.

In the Breakpoints window, click a breakpoint to select it.

3 Select Break—Count. A window is displayed with afield for entering a
number of iterations. Enter an integer value. The execution will stop when
the line has been executed the specified number of times.

Using conditions with breakpoints

The debugger alows you to associate a condition with a breakpoint, so that
execution stops only when the line is executed and the condition is met.

To associate a condition with a breakpoint:

187

Using the debugger

1 From the Source window, select Break— Display. The Breakpoints
window is displayed.

2 Inthe Breakpoints window, click abreakpoint to select it.

3 Select Break—Condition. A window isdisplayed with afield for entering
an expression. The execution will stop when the condition is true.

The expressions used here are the same as those that can be used in the
Inspection window, and include the following:

Local variables

Static variables

Expressions using the dot operator
Expressions using subscripts []

Expressions using parentheses, arithmetic, or logical operators.

Breaking when execution is not interrupted

With a single exception, breakpoints can only be set when program execution
isinterrupted. If you clear all breakpoints, and run the program you are
debugging to completion, you can no longer set a breakpoint on aline or at the
start of amethod. Also, if aprogram isrunning in aloop, execution is
continuing and is not interrupted.

To debug your program under either of these conditions, select Run—Stop
from the Source window. This stops execution at the next line of Java code that
is executed. You can then set breakpoints at other pointsin the code.

Disconnecting from the database

When the program has run to compl etion, or at anytime during debugging, you
can disconnect from the database from the Connect window. Then, exit the
Source window and reconnect to the database after the debug program
terminates.

188

Chapter 10 Debugging Java in the Database

A debugging tutorial

This section takes you through a simple debugging session.

Before you begin

The source code for the class used in this tutorial islocated in
SSYBASE/$SSYBASE ASE/sample/JavaSgl/manual -
examples/JDBCExamples.java.

Before you run the debugger, compile the source code using the javac
command with the -g option.

See*“ Creating Javaclassesand JARS’ on page 16 for compl ete instructionsfor
compiling and installing Java classes in the database.

Start the Java debugger and connect to the database

You can start the debugger and connect to the database using a script, command
line options, or Sybase Central. In thistutorial, we use jdebug to start the
debugger. You can use any database.

Follow these steps:
1 Start Adaptive Server.

2 If Javaqueries have not yet been executed on your server, run any Java
query to initialize the Java subsystem and start a Java VM.

3 Runthe $SYBASE/$SYBASE ASE/debugger/jdebug script. jdebug
prompts you for these parameters:

a Machine name of the Adaptive Server
b Port number for the database

¢ Your login name

d Your password

e An alternate path to Debug.jar if itslocation is not in your
CLASSPATH

Once the connection is established, the debugger window displays alist of
available Java VMs or “Waiting for aVM.”

189

A debugging tutorial

Attach to a Java VM
To attach to a Java VM from your user session:

1 Withthedebugger running, connect to the sample database fromisgl asthe
sa.

$SYBASE/bin/isqgl -Usa -P

Note You cannot start Java execution from the debugger. To start a Java
VM you must carry out aJavaoperation from another connection using the
same user name.

2 Execute Java code using the following statements:

select JDBCExamples.serverMain (‘'createtable’)
select JDBCExamples.serverMain(‘insert’)
select JDBCExamples.serverMain(‘select’)

The Sybase Java VM startsin order to retrieve the Java objects from the
table. The debugger immediately stops execution of the Java code.

The debugger Connection window displaysthe JavaVMsbelonging to the
user in this format:

VM#: “login name, spid:spid#”

3 Inthedebugger Connection window, click the JavaVM you want and then
click Attach to VM. The debugger attaches to the Java VM and the Source
window appears. The Connection window disappears.

Next, enable the Source window to show the source code for the method.
The source code is available on disk.

Load source code into the debugger

The debugger looks for source code files. You need to make the
$SYBASE/$SYBASE ASE/sample/JavaSgl/manual -examples/ subdirectory
available to the debugger, so that the debugger can find source code for the
class currently executing in the database.

To add a source code location to the debugger:

1 From the Source window, select File— Source Path. The Source Path
window displays.

190

Chapter 10 Debugging Java in the Database

2 From the Source Path window, select Path—Add. Enter the following
location into the text box:

$SSYBASE/$SYBASE ASE/sample/JavasSql/
manual-examples/

The source code for the IDBCExamples class displaysin thewindow, with
the first line of the Query method serverMain() highlighted. The Java
debugger has stopped execution of the code at this point.

You can now close the Source Path window.

Step through source code

Examples

You can step through source code in the Java debugger in several ways. In this
section we illustrate the different ways you can step through code using the
serverMain() method.

When execution pauses at aline until you provide further instructions, we say
that the execution breaks at the line. The lineisabreakpoint. Stepping
through codeis a matter of setting explicit or implicit breakpointsin the code,
and executing code to that breakpoint.

Following the previous section, the debugger should have stopped execution of
JDBCExamples.serverMain() at the first statement:

Here are some steps you can try:

1 Stepping into afunction — press F7 to step to the next line in the current
method.

2 PressF8 to step into the function doAction() in line 99.

3 Runtoasdected line. You are now in function doAction(). Click on line
155 and press F6 to run to that line and break:

String workString = “Action(“ + action + “)”;

4 Set abreakpoint and execute to it — select line 179 and press F9 to set a
breakpoint on that line when running isgl select
JDBCExamples.serverMain ('select!'):

workString + = selecter(con) ;

Press F5 to execute to that line.

191

A debugging tutorial

5 Experiment —try different methods of stepping through the code. End with
F5 to complete the execution.

When you have completed the execution, the Interactive SQL Data
window displays:

Action(select) - Row with id = 1: name (Joe Smith)

Inspecting and modifying variables

You can inspect the values of both local variables (declared in a method) and
class static variablesin the debugger.

Inspecting local variables

192

You can inspect the values of local variables in a method as you step through
the code, to better understand what is happening.

To inspect and change the value of avariable:

1 Setabreakpoint at the first line of the selecter() method from the
Breakpoint window. Thislineis:

String sgl = "select name, home from xmp where
id=2";

2 Inlinteractive SQL, enter the following statement again to execute the
method:

select JDBCExamples.serverMain(‘'select’)
The query executes only as far as the breakpoint.
3 PressF7 to step to the next line. The sgl variable has now been declared
and initialized.
4 From the Source window, select Window— L ocals. The Local window
appears.

The Locals window shows that there are several local variables. The sl
variable has avalue of zero. All others are listed as not in scope, which
means they are not yet initialized.

You must add the variables to the list in the Inspect window.

5 Inthe Source window, press F7 repeatedly to step through the code. As
you do so, the values of the variables appear in the Locals window.

Chapter 10 Debugging Java in the Database

If alocal variableisnot asimpleinteger or other quantity, then as soon as
itisset a+ sign appears next to it. Thismeansthelocal variable hasfields
that have values. You can expand alocal variable by double-clicking the +
sign or setting the cursor on the line and pressing Enter.

Complete the execution of the query to finish this exercise.

Modifying local variables
You can aso modify values of variables from the Locals window.

To modify alocal variable:

1

In the debugger Source window, set a breakpoint at the following linein
the selecter() method of the serverMain
class:

String sgl = "select name, home from xmp where
id=?";

Step past this line in the execution.
Open the Locals window. Select theid variable, and select

Local—Modify. Alternatively, you can set the cursor ontheline and press
Enter.

Enter avalue of 2 in thetext box, and click OK to confirm the new value.
Theid variableis set to 2 in the Locals window.

From the Source window, press F5 to complete execution of the query. In
the Interactive SQL Data window, an error message displays indicating
that no rows were found.

Inspecting static variables
You can also inspect the values of class-level variables (static variables).

To inspect a static variable:

1

From the debugger Source window, select Window—Classes. The Classes
window is displayed.

Select aclassin the left box. The methods and static variables of the class
are displayed in the boxes on the right.

Select Static—1nspect. The Inspect window is displayed. It lists the
variables available for inspection.

193

A debugging tutorial

194

CHAPTER 11

Overview

Network Access Using java.net

Adaptive Server 12.5 supports java.net, a package that allows you to
create networking applications and access different kinds of external
servers.

Topic Page
Overview 195
java.net classes 196
Setting up java.net 196
Example usage 197
User notes 202
Where to go for help 202

Adaptive Server java.net is compliant with the Java 1.2 API.

Support for java.net in the Adaptive Server allowsyouto createclient-side
Java networking applications within the server. You can create a network
Javaclient application in the Adaptive Server that connectsto any server,
which in effect enables Adaptive Server to function asaclient to external
servers. See" Example usage’ on page 197.

You can use java.net for many purposes:
e Download documents from any URL address on the Internet.
e Send e-mail messages from inside the server.

« Connect to an external server to save a document and perform file
functions: saving a document, editing a document, and so forth.

e Access documentsusing XML.

195

java.net classes

java.net classes

Table 1.1 shows the java.net classes Sybase supports.

Table 11-1: Supported java.net classes

Class Supported | Special circumstances
InetAddress Yes None
Socket Yes Does not support deprecated

constructor “Socket (string host, int
port, boolean stream)” when stream

=fdse

URL Yes No file URL
HttpURLConnection Yes None
URLConnection Yes No file URL
URLDecoder Yes None
URLEncoder Yes None
DatagramPacket No

DatagramSocket No

MulticastSocket No

ServerSocket No

You can use any of the supported classes in java.net to write Adaptive
Server client applications.

Setting up java.net
The following steps enable java.net.

[lenabling jave.net
1 Enable Java Virtua Machine (VM).
sp_configure “enable java”, 1

2 Specify the number of socketsyou want to open (thedefaultis0). The
number of sockets configuration parameter is dynamic; you need not
restart Adaptive Server if you change the configuration option. For
example, to open 10 sockets, enter

sp_configure “number of java sockets”, 10

196

Chapter 11 Network Access Using java.net

3 Adjust the amount of memory available for the Java VM. Since you
may be streaming large text documentsin and out, you may need to
increase the amount of memory availableto the JavaVM. The
parameters you may need to adjust are:

* size of global fixed heap
* size of process object heap
* size of shared class heap

For more information on these parameters, see Chapter 5, “ Configuration
Parameters,” in the Sybase System Administration Guide.

Example usage

This section provides examplesfor using both socket classes and the URL
class. You can:

e Accessan externa document with XQL, using the URL class
e Savetext out of Adaptive Server

¢ Usethe MailTo class URL to mail a document

Using socket classes

Socket classes allow you to do more sophisticated network transfers than
you can achieve using URL classes. The Socket class alows you to
connect to specified port on any specified network host, and use the
InputStream and OutputStream classes to read and write the data.

Saving text out of Adaptive Server

This example describes how to set up a client application in Adaptive
Server. Adaptive Server version12.5 does not support direct accessto a
file; this example is aworkaround for this limitation.

You can write your own external server, which performs file operations,
and connect to this new server from the Adaptive Server, using a socket
created from a Socket class.

197

Example usage

In the basic roles of client and server, the client connects to the server and
streams the text, while the server receives the stream and streamsiit to a
file.

This example shows how you can install a Java application in Adaptive
Server, using java.net. This application acts as a client to an external
server.

[IThe client process:
1 Receives an InputStream.

2 Creates asocket using the Socket class to connect to the server.
3 Creates an OutputStream on the socket.
4 Readsthe InputStream and writes it to the OutputStream:

public static void writeOut (InputStream fin)
throws Exception({

Socket socket = new Socket (“localhost”, 1718);

OutputStream fout = new

BufferedOutputStream (socket.getOutputStream()) ;byte []
buffer = new byte [10];

int bytes_read;

while (bytes read = fin.read(buffer)) ! = -1{
fout.write (buffer, 0, bytes read);

}

fout.close () ;

}

Compile this program.

[_IThe server process:

1 Createsaserver socket, using the SocketServer class, to listen on a
port.

2 Usesthe server socket to obtain a socket connection.
Receives an InputStream.

4 Readsthe InputStream and writes it to a FileOutputStream.

Note Inthisexample, the server does not use threads, and thereforeit can
receive a connection from only one client at atime.

public class FileServer ({
public static void main (string[] args) throws

198

Chapter 11 Network Access Using java.net

IOException{
Socket client = accept (1718);
try{
InputStream in = client.getInputStream () ;
FileOutputStream fout = new
FileOutputStream(“chastity.txt”) ;
byte[] buffer = new byte [10];
int bytes read;
while (bytes read = in.read(buffer))!= —1){
fout.write (buffer, 0, bytes read);
}

fout.close () ;
}Einally {
client.close ();
}
}

static Socket accept (int port) throws
IOException{
System.out.prinln
(“Starting on port “ + port);
ServerSocket server = new
ServerSocket (port) ;
System.ou.println (“Waiting”) ;
Socket client = server.accept ();
System.out.println (“Accepted from “ +
client.getInetAddress ());
server.close ();
return client;

}
}

Compile this program.
To use this combination of client and server, you must install theclient in
Adaptive Server and start the external server:

witness% java FileServer &

[2] 28980

witness% Starting on port 1718
Waiting

Invoke the client from within Adaptive Server.

create table t(cl text)

go
insert values into tl (“samplestring”)

go

select TestStream2File.writeOut (cl) from t

199

Example usage

Using the URL class

go

You can use the URL classto:

Send an e-mail message.

Download an HT TP document from aWeb server. Thisdocument can
be a static file or can be dynamically constructed by the Web server.

Access an external document with XQL

Using the MailTo class URL to mail a document

Mailing adocument isagood example of using the URL class. Beforeyou
start, you must have your client connected to a mailer, such as sendmail.

1

2
3
4

5

Create a URL object.

Set a URLConnection object.

Create an OutputStream object from the URL object.
Write the mail. For example;

public static void sendIt() throws Execption{
System.getProperty ("mail.host",
"salsa.sybase.com") ;

URL url = new URL(mailto:"name@sybase.com") ;
URLConnection conn = url.openConnection() ;
PrintStream out = new

PrintStream(conn.getOutputStream(), true);
out.print ("From: kennysesybase.com"+"\r\n") ;
out.print ("Subject: Works Great!"+"\r\n");
out.print ("Thanks for the example - it works

great!"+"\r\n") ;
out.close() ;
System.out.printIn(“Messsage Sent”) ;

}

Install the MailTo class for sending e-mail from within the database:

select MailTo.sendIt ()
Message Sent!

A connection to a server isrequired for these actions.

200

Chapter 11 Network Access Using java.net

Obtaining an HTTP document

Another way to use the URL classis to download a document from an
HTTPURL. Before you start, your client must connect to a\Web server. In
the client code, you:

e Createa URL object.

* Create an InputStream object from the URL object.

* Useread on the InputStream object to read in the document.
To use the following code sample, you must:

* Read the entire document into Adaptive Server memory.

e Create anew InputStream on the document in Adaptive Server
memory.

For example:

public static InputStream url test()
throws Exception

{

URL u = new URL(“http://www.xxxxxx.com/"”) ;
Reader in = new InputStreamReader (u.openStream())) ;
int n=0, off;
char c[]=new char[50000];
for (off=0; (off<c.length-512)
&& ((n=in.read(c,o0ff,512)) !=-1;0ff+=n)
for (off=0; off < c.length; off ++) {
bloff]=(byte)c[off];
in.close() ;
ByteArrayInputStream test =

new ByteArrayInputStream(b,0,0ff) ;
return (InputStream) test}

After you create the new InputStream class, you can install this class and
use it to read atext file into the database, inserting datainto atable, asin
the following example.

create table t (cl text)
insert into t values (

URLprocess.readURL)
select datalength(cl) from

201

User notes

Accessing an external document with XQL

User notes

You can access an external document using the Adaptive Server XQL
query function, which both parses and queries XML documents.

Passthe XML document to the X QL parser asan InputStream. You can use
the class URLProcess to pass the XML document to either the XQL parse
method or the XQL query method.

The class URLProcess is available on

select xml.Xgl.query(“//ItemID”,
URLProcess.readURL
(“http://www.myserver.com/xmltest.xml”))

* $SYBASE/ASE-12_5/sample/JavaSql for UNIX environments
* %SYBASE\ASE-12 5\sample\JavaSql for NT environments

Certain aspects of java.net require caution:

» Most objects associated with java.net are not serializable, which
means that you cannot insert them into tables.

* You might encounter the exception “ Too many open files,” whenyou
have opened only afew. Check Number of Java Sockets configuration
parameter.

* Most of the I/O-related functions use buffered 1/0, which means that
you might need to flush your data explicitly. The PrintWriter classis
an example of aclassin which the datais not automatically flushed.

Where to go for help

202

Reference documents:

e JavaExamplesin aNutshell: A Desktop Quick Reference. David
Flanagan, O'Reilly 1997

Chapter 11 Network Access Using java.net

« JavaNetwork Programming: Complete guideto networking, streams,
and distributed computing. Hughes, Shoffner, Hamner, Bellur,
Manning 1997

These documents are printed; you can find many more Java documents on
the java.sun.com Web site.

203

Where to go for help

204

CHAPTER 12

Assignments

Reference Topics

This chapter presents information on several reference topics.

Topic Page
Assignments 205
Allowed conversions 207
Transferring Java-SQL objectsto clients 207
Supported Java API packages, classes, and methods 208
Invoking SQL from Java 211
Transact-SQL commands from Java methods 212
Datatype mapping between Java and SQL 217
Java-SQL identifiers 219
Java-SQL class and package names 220
Java-SQL column declarations 221
Java-SQL variable declarations 221
Java-SQL column references 222
Java-SQL member references 223
Java-SQL method calls 224

This section defines the rules for assignment between SQL data items

whose datatypes are Java-SQL classes.

Each assignment transfers a source instance to atarget data item:

* Foraninsert statement specifying atablethat hasa Java-SQL column,
refer to the Java-SQL column as the target data item and the insert

value as the source instance.

* For an update statement that updates a Java-SQL column, refer to the
Java-SQL column as the target data item and the update value asthe

source instance.

205

Assignments

For aselect or fetch statement that assignsto avariable or parameter, refer
to the variable or parameter as the target dataitem and the retrieved value
as the source instance.

Note If the sourceisavariable or parameter, then it isareferenceto an object
inthe Java VM. If the source is a column reference, which contains a
serialization, then the rules for column references (see Java-SQL column
references on page 222) yield areference to an object in the Java VM. Thus,
the source is areference to an object in the Java VM.

Assignment rules at compile-time

1

Define SC and TC as compile-time class names of the source and target.
Define SC_T and TC_T as classes named SC and DT in the database
associated with the target. Similarly, define SC_S and TC_S as classes
named SC and DT in the database associated with the source.

SC_T must bethesameasTC_T or asubclass of TC_T.

Assignment rules at runtime
Assume that DT_SC isthe same asDT_TC or its subclass.

206

Define RSC asthe runtime class name of the source value. DefineRSC_S
asthe class named RSC in the database associated with the source. Define
RSC_T asthe name of aclassRSC_T installed in the database associated
with the target. If thereisno classRSC_T, then an exceptionisraised. If
RSC_T isneither the same as TC_T nor asubclass of TC_T, then an
exception is raised.

If the databases associated with the source and target are not the same
database, then the source object is serialized by its current class, RSC_S,
and that serialization is deserialized by the classRSC_T that it will be
associated with in the database associated with the target.

If thetarget is a SQL variable or parameter, then the sourceis copied by
reference to the target.

If thetarget is a Java-SQL column, then the source is serialized, and that
serialization is deep copied to the target.

Chapter 12 Reference Topics

Allowed conversions

Y ou can use convert to change the expression datatype in these ways:

Convert Java types where the Java datatype is a Java object type to the
SQL datatype shown in “ Datatype mapping between Javaand SQL” on
page 217. The action of the convert function isthe mapping implied by the
Java-SQL mapping.

Convert SQL datatypes to Javatypes shown in “ Datatype mapping
between Java and SQL"” on page 217. The action of the convert function
is the mapping implied by the SQL -Java mapping.

Convert any Java-SQL classinstalled in the SQL system to any other Java-
SQL classinstalled in the SQL system if the compile-time datatype of the
expression (source class) is a subclass or superclass of the target class.
Otherwise, an exception is raised.

The result of the conversion is associated with the current database.

See “Using the SQL convert function for Java subtypes,” for a discussion of
the use of the convert function for Java subtypes.

Transferring Java-SQL objects to clients

When a value whose datatype is a Java-SQL object typeis transferred from
Adaptive Server to aclient, the data conversion of the object depends on the
client type:

If the client isan isql client, the toString() or similar method of the object
isinvoked and theresult istruncated to varchar, which istransferred to the
client.

Note The number of bytes transferred to the client is dependent on the
value of the @ @stringsize global variable. The default value is 50 bytes.
See " Representing Javainstances’ on page 31 for more information.

If the client is a Java client that uses jConnect 4.0 or later, the server
transmits the object serialization to the client. This serialization is
seamlessly deserialized by jConnect to yield a copy of the object.

If theclientisabcp client:

207

Supported Java API packages, classes, and methods

If the object is a column declared asin row, the serialized value
contained in the column istransferred to the client asavarbinary value
of length determined by the size of the column.

Otherwise, the serialized value of the abject (the result of the
writeObject method of the object) is transferred to the client asan
image value.

Supported Java API packages, classes, and methods

Adaptive Server supportsmany but not all classes and methodsinthe JavaAPI.
In addition, Adaptive Server may impose security restrictions and
implementation limitations. For example, Adaptive Server does not support all
of the thread creation and manipulation facilities of java.lang.Thread.

The supported packages are installed with Adaptive Server and are always
available. They cannot be installed by the user.

This section lists:

» Supported Java packages and classes

» Unsupported Java packages

» Unsupported java.sgl methods

Supported Java packages and classes

* Jjava.io

208

Externalizable
Datalnput
DataOutput
ObjectlnputStream
ObjectOutputStream

Serializable

* java.lang —see “Unsupported java.sgl methods and interfaces’ on page
209 for alist of the unsupported classesin java.lang.

Chapter 12 Reference Topics

java.math
java.net — see Chapter 11, “Network Access Using java.net”

java.sgl —see" Unsupported java.sgl methods and interfaces’ on page 209
for alist of the unsupported methods and interfacesin java.sql.

java.text
java.util

java.util.zip

Unsupported Java packages and classes

java.applet

java.awt
java.awt.datatransfer
java.awt.event
java.awt.image
java.awt.peer
java.beans
java.lang.Thread
java.lang.ThreadGroup
java.rmi

java.rmi.dgc
java.rmi.registry
java.rmi.server
java.security
java.security.acl

java.security.interfaces

Unsupported java.sql methods and interfaces

Connection.commit()

209

Supported Java API packages, classes, and methods

210

Connection.getMetaData()
Connection.nativeSQL()
Connection.rollback()
Connection.setAutoCommit()
Connection.setCatalog()
Connection.setReadOnly()
Connection.setTransactionlsolation()

DatabaseMetaData.* — DatabaseMetaData is supported except for these
methods:

* deletesAreDetected()

e getUDTs()

. insertsAreDetected()

* updatesAreDetected()

e othersDeletesAreVisible()

e othersinsertsAreVisible()

e othersUpdatesAreVisible()

* ownDeletesAreVisible()

* ownlnsertsAreVisible()

* ownUpdatesAreVisible()
PreparedStatement.setAsciiStream()
PreparedStatement.setUnicodeStream()
PreparedStatement.setBinaryStream()
ResultSetMetaData.getCatalogName()
ResultSetMetaData.getSchemaName()
ResultSetMetaData.getTableName()
ResultSetMetaData.isCaseSensitive()
ResultSetMetaData.isReadOnly()
ResultSetMetaData.isSearchable()

ResultSetMetaData.isWritable()

Chapter 12 Reference Topics

Statement.getMaxFieldSize()
Statement.setMaxFieldSize()
Statement.setCursorName()
Statement.setEscapeProcessing()
Statement.getQueryTimeout()

Statement.setQueryTimeoutt()

Invoking SQL from Java

Adaptive Server suppliesanative JDBC driver, java.sql, that implements JDBC
1.1 specifications. It is described at http://www.javasoft.com. java.sql enables
Java methods executing in Adaptive Server to perform SQL operations.

Special considerations

java.sgl.DriverManager.getConnection() accepts these URLSs:

null

(the null string)

jdbc:default:connection

When invoking SQL from Java some restrictions apply:

A SQL query that is performing update actions (update, insert, Or delete)
cannot use the facilities of java.sgl to invoke other SQL operations that
also perform update actions.

Triggersthat are fired by SQL using the facilities of java.sql cannot
generate result sets.

java.sgl cannot be used to execute extended stored procedures or remote
stored procedures.

211

Transact-SQL commands from Java methods

Transact-SQL commands from Java methods

212

You can use certain Transact-SQL commands in Java methods called within
the SQL system. Table 12-1 lists Transact-SQL commands and whether or not
you can use them in Java methods. You can find further information on most
of these commands in the Sybase Adaptive Server Enterprise Reference
Manual.

Chapter 12 Reference Topics

Table 12-1: Support status of Transact-SQL commands

Command Status

alter database Not supported.

alter role Not supported.

alter table Supported.

begin ... end Supported.

begin transaction Not supported.

break Supported.

case Supported.

checkpoint Not supported.

commit Not supported.

compute Not supported.

connect - disconnect Not supported.

continue Supported.

create database Not supported.

create default Not supported.

create existing table Not supported.

create function Supported.

create index Not supported.

create procedure Not supported.

create role Not supported.

create rule Not supported.

create schema Not supported.

create table Supported.

create trigger Not supported.

create view Not supported.

cursors Not supported.
Only “server cursors’ are
supported, that is, cursors
that are declared and used
within a stored procedure.

dbcc Not supported.

declare Supported.

disk init Not supported.

disk mirror Not supported.

disk refit Not supported.

disk reinit Not supported.

disk remirror Not supported.

213

Transact-SQL commands from Java methods

214

Command Status

disk unmirror Not supported.
drop database Not supported.
drop default Not supported.
drop function Supported.
drop index Not supported.
drop procedure Not supported.
drop role Not supported.
drop rule Not supported.
drop table Supported.
drop trigger Not supported.
drop view Not supported.
dump database Not supported.
dump transaction Not supported.
execute Supported.
goto Supported.
grant Not supported.
group by and having clauses Supported.
if...else Supported.
insert table Supported.

kill Not supported.
load database Not supported.
load transaction Not supported.
online database Not supported.
order by Clause Supported.
prepare transaction Not supported.
print Not supported.
raiserror Supported.
readtext Not supported.
return Supported.
revoke Not supported.
rollback trigger Not supported.
rollback Not supported.
save transaction Not supported.

set See Table 12-2 for set
options.

setuser Not supported.

shutdown Not supported.

Chapter 12 Reference Topics

Command Status
truncate table Supported.
union Operator Supported.
update statistics Not supported.
update Supported.

use Not supported.
waitfor Supported.
where Clause Supported.
while Supported.
writetext Not supported.

Table 12-2 lists set command options and whether or not you can use them in

Java methods.

215

Transact-SQL commands from Java methods

Table 12-2: Support status of set command options

216

set command option Status

ansinull Supported.
ansi_permissions Supported.

arithabort Supported.

arithignore Supported.

chained Not supported. See Note 1.
char_convert Not supported.
cis_rpc_handling Not supported

close on endtran Not supported

cursor rows Not supported
datefirst Supported

dateformat Supported

fipsflagger Not supported
flushmessage Not supported
forceplan Supported
identity_insert Supported

language Not supported

lock Supported

nocount Supported

noexec Not supported

offsets Not supported
or_strategy Supported
parallel_degree Supported. See Note 2.
parseonly Not supported
prefetch Supported
process_limit_action Supported. See Note 2.
procid Not supported

proxy Not supported
quoted_identifier Supported

replication Not supported

role Not supported
rowcount Supported
scan_parallel_degree Supported. See Note2.
self_recursion Supported
session_authorization Not supported
showplan Supported
sort_resources Not supported

Chapter 12

Reference Topics

set command option Status

statistics io Not supported

statistics subquerycache Not supported

statistics time Not supported
string_rtruncation Supported

stringsize Supported

table count Supported

textsize Not supported

transaction iso level Not supported. See Note 1.
transactional_rpc Not supported

Note (1) set commands with options chained or
transaction isolation level are allowed only if the setting
that they specify isaready in effect. That is, thiskind of
set command isalowed if it has no affect. Thisisdoneto
support common coding practises in stored procedures.

Note (2) set commands pertaining to parallel degree are
allowed but have no affect. This supportsthe use of stored
procedures that set the parallel degree for other contexts.

Datatype mapping between Java and SQL

Adaptive Server maps SQL datatypes to Java types (SQL-Java datatype
mapping) and Java scalar typesto SQL datatypes (Java-SQL datatype

mapping). Table 12-3 shows SQL -Java datatype mapping.

217

Datatype mapping between Java and SQL

Table 12-3: Mapping SQL datatypes to Java types

SQL type Java type

char String

varchar String

nchar String

nvarchar String

text String

numeric java.math.BigDecimal
decimal java.math.BigDecimal
money java.math.BigDecimal
smallmoney Java.math.BigDecimal
bit boolean

tinyint byte

smallint short

integer int

real float

float double

double precision double

binary byte[]

varbinary byte[]

image byte[]

datetime java.sql.Timestamp
smalldatetime java.sql.Timestamp

Table 12-4 shows Java-SQL datatype mapping.

218

Chapter 12 Reference Topics

Table 12-4: Mapping Java scalar types to SQL datatypes

Java scalar type SQL type
boolean bit

byte tinyint
short smallint
int integer
long integer
float real

double double

Java-SQL identifiers

Description

Syntax

Usage

Java-SQL identifiers are a subset of Javaidentifiers that can be referenced in
SQL.

java_sql_identifier ::= alphabetic character | underscore (_) symbol

[alphabetic character | arabic numeral | underscore(_) symbol |
dollar ($) symbol]

Java-SQL identifiers can be a maximum of 255 bytesin length if they are

surrounded by quotation marks. Otherwise, they must be 30 bytes or
fewer.

Thefirst character of the identifier must be either an alphabetic character
(uppercase or lowercase) or the underscore () symbol. Subsequent
characters can include al phabetic characters (uppercase or lowercase),
numbers, the dollar ($) symbol, or the underscore (_) symbol.

Java-SQL identifiers are always case sensitive.

Delimited Identifiers

Delimited identifiers are object names enclosed in double quotes. Using
delimited identifiers for Java-SQL identifiers allows you to avoid certain
restrictions on the names of Java-SQL identifiers.

Note You can use double quotes with Java-SQL identifiers whether the
set quoted_identifier option iSon or off.

Delimited identifiers allow you to use SQL reserved words for packages,
classes, methods, and so on. Each time you use the delimited identifier in
a statement, you must enclose it in double quotes. For example:

219

Java-SQL class and package names

See also

create table t1l
(cl1 char(12)
c2 pl.”select”.p2.”jar")

» Doublequotessurround only individual Java-SQL identifiers, not thefully
qualified name.

For additional information about identifiers, see Chapter 5, “Transact-SQL
Topics,” in the Reference Manual.

Java-SQL class and package names

Description

Syntax

Parameters

Usage

220

To reference a Java-SQL class or package, use the following syntax:

java_sql_class_name ::= [java_sql_package_name.]java_sql_identifier
java_sql_package_name ::=
[java_sql_package name.Jjava_sql_identifier

java_sql_class name
The fully qualified name of a Java-SQL classin the current database.

java_sql_package name
The fully qualified name of a Java-SQL package in the current database.

java_sql_identifier
See Java-SQL identifiers.

For Java-SQL class names:;
e A classnamereference dwaysrefersto aclassin the current database.

» If you specify a Java-SQL class name without referencing the package
name, only one Java-SQL class of that name must exist in the current
database, and its package must be the default (anonymous) package.

» If aSQL user-defined datatype and a Java-SQL class possess the same
sequence of identifiers, Adaptive Server uses the SQL user-defined
datatype name and ignores the Java-SQL class name

For Java-SQL package names:

» If you specify a Java-SQL subpackage name, you must reference the
subpackage name with its package name:

java_sql_package_name.java_sql_subpackage_name

Chapter 12 Reference Topics

e UseJava-SQL package names only as qualifiersfor class names or
subpackage names and to del ete packages from the database using the
remove java command.

Java-SQL column declarations

Description

Syntax

Parameters

Usage

See also

To declare a Java-SQL column when you create or alter atable, use the
following syntax:

java_sql_column ::= column_name java_sgl_class_name

java_sgl_column
Specifies the syntax of Java-SQL column declarations.

column_name
The name of the Java-SQL column.

java_sgl_class name
The name of aJava-SQL classin the current database. Thisisthe“declared
class’ of the column.

e Thedeclared class must implement either the Serializable or Externalizable
interface.

e A Java-SQL column is always associated with the current database.
e A Java-SQL column cannot be specified as:

* notnull

* unique

e A primary key

You use aJava-SQL column declaration only when you create or alter atable.
See the create table and alter table information in the Reference Manual.

Java-SQL variable declarations

Description

Syntax

Use Java-SQL variable declarations to declare variables and stored procedure
parameters for datatypes that are Java-SQL classes.

java_sql_variable ::= @variable_name java_sql_class_name

221

Java-SQL column references

Parameters

Usage

See also

java_sql_parameter ::= @parameter_name java_sql_class_name
java_sql_variable
Specifies the syntax of a Java-SQL variable in a SQL stored procedure.

java_sql_parameter

Specifies the syntax of a Java-SQL parameter in a SQL stored procedure.
java_sgl_class_name

The name of a Java-SQL classin the current database.

A java_sql_variable or java_sql_parameter is always associated with the
database containing the stored procedure.

Refer to the Reference Manual for more information about variable
declarations.

Java-SQL column references

Description

Syntax

Parameters

Usage

222

To reference a Java-SQL column, use the following syntax:

column_reference ::=
[[[database_name.]Jowner.]Jtable_name.]column_name
| database_name..table_name.column_name

column_reference
A reference to a column whose datatype is a Java-SQL class.
» If the value of the column is null, then the column reference is aso null.

* If thevaue of the column is aJava serialization, S, and the name of its
classisCs, then:

» If theclassCs doesnot exist in the current database or if CS isnot the
name of aclassin the database associated with the serialization, then
an exception israised.

Note The database associated with the serialization is normally the
database that contains the column. Serializations contained in work
tablesand in temporary tables created with “insert into #tempdb” are,
however, associated with the database in which the serialization was
stored originaly.

» Thevalue of the column referenceis:
CSC.readObject(S)

Chapter 12 Reference Topics

where CSC is the column reference. If the expression raises an
uncaught Java exception, then an exception is raised.

The expression yields areference to an object in the Java VM, which
is associated with the database associated with the serialization.

Java-SQL member references
Description References afield or method of a class or class instance.

Syntax member_reference ::= class_member_reference |
instance_member_reference

class_member_reference ::= java_sql_class_name.method_name
instance_member_reference ::= instance_expression>>member_name

instance_expression ::= column_reference | variable_name
| parameter_name | method_call | member_reference

member_name ::= field_name | method_name

Parameters member_reference
An expression that describes afield or method of a class or object.

class_ member_reference
An expression that describes a static method of a Java-SQL class.

instance_member_reference
An expression that describes a static or dynamic method or field of a Java-
SQL classinstance.

java_sgl_class name
A fully qualified name of a Java-SQL classin the current database.

instance_expression
An expression whose datatype is a Java-SQL class.

member_name
The name of afield or method of the class or class instance.

Usage « If amember references afield of aclassinstance, the instance has a null
value, and the Java-SQL member reference is the target of afetch, select,
or update statement, then an exception is raised.

Otherwise, the Java-SQL member reference has the null value.

e Thedouble angle (>>) and dot (.) qualification take precedence over any
operator, such as the addition (+) or equal to (=) operator, for example:

223

Java-SQL method calls

X>>A1>>Bl + X>>Al>>B2

In this expression, the addition operation is performed after the members
have been referenced.

» Thefield or method designated by a member reference is associated with
the same database asthat of its Java-SQL class or instance of its Java-SQL
class.

If the Javatype of amember referenceisone of the Java scalar types (such
as boolean, byte, and so on), then the corresponding SQL datatype of the
referenceis obtained by mapping the Javatypeto its equivalent SQL type.

If the Javatype of a member reference is an object type, then the SQL
datatype is the same Java object type or class.

Java-SQL method calls

Description

Syntax

Parameters

Usage

224

Toinvoke aJava-SQL method, which returns asingle value, use the following
syntax:

method_call ::= member_reference ([parameters])
| new java_sgl_class_name ([parameters])

parameters ::= parameter [(, parameter)...]
parameter ::= expression

method_call
An invocation of a static method, instance method, or class constructor. A
method call can be used in an expression where a non-constant value of the
method's datatype is required.

member_reference
A member reference that denotes a method.

parameters
Thelist of parametersto be passed to the method. If there are no parameters,
include empty parentheses.

Method overloading

* When there are methods with the same name in the same class or instance,
the issue is resolved according to Java method overloading rules.

Datatype of method calls
* The datatype of amethod call is determined as follows:

Chapter 12 Reference Topics

If amethod call specifies new, its datatype isthat of its Java-SQL
class.

If amethod call specifies amember reference that denotes a type-
valued method, then the datatype of the method call isthat type.

If amethod call specifies amember reference that denotes avoid
static method, then the datatype of the method call is SQL integer.

If amethod call specifies amember reference that denotes avoid
instance method of aclass, then the datatype of the method call isthat
of the class.

e Toinclude a parameter in a member reference when the parameter isa
Java-SQL instance associated with another database, you must ensure that
the class name associated with the Java-SQL instance isincluded in both
databases. Otherwise, an exception is raised.

Runtime results

¢ Theruntimeresult of amethod call is as follows:

If amethod call specifiesamember reference whose runtimevalueis
null (that is, areferenceto amember of anull instance), then theresult
isnull.

If amethod call specifies amember reference that denotes a type-
valued method, then the result is the value returned by the method.

If amethod call specifies amember reference that denotes avoid
static method, then the result is the null value.

If amethod call specifies a member reference that denotes avoid
instance method of an instance of aclass, thentheresultisareference
to that instance.

The method call and result of the method call are associated with the
same database.

Adaptive Server does not pass the null value as the value of a
parameter to a method whose Javatypeis scalar.

225

Java-SQL method calls

226

Glossary

assignment
associated JAR

bytecode

class

class method

class file
class instance

datatype mapping

declared class

document type
declaration (DTD)

Thisglossary describes Java and Java-SQL terms used in this book. For a
description of Adaptive Server and SQL terms, refer to the Adaptive
Server Glossary.

A generic term for the data transfers specified by select, fetch, insert, and
update Transact-SQL commands. An assignment sets a source value into
atarget dataitem.

If aclass/JAR isinstalled with installjava and the -jar option, then the JAR
is retained in the database and the class is linked in the database with the
associated JAR. Seeretained JAR.

The compiled form of Java source code that is executed by the Java VM.

A class is the basic element of Java programs, containing a set of field
declarations and methods. A classisthe master copy that determines the
behavior and attributes of each instance of that class. classdefinitionisthe
definition of an active data type, that specifies alegal set of values and
defines a set of methods that handle the values. See class instance.

See static method.

A file of type “class’ (for example, myclass.class) that contains the
compiled bytecode for a Java class. See Java file and Java archive (JAR).

Value of the class datatypethat contains avaluefor each field of the class
and that accepts all methods of the class.

Conversions between Java and SQL datatypes.

The declared datatype of aJava-SQL dataitem. It iseither the datatype of
the runtime value or a supertype of it.

In XML, every valid document hasa DTD that describes the elements
available in that document type. A DTD can be embedded in the XML
document or referenced by it.

227

Glossary

eXtensible Markup
Language (XML)

eXtensible Query
Language (XQL)

eXtensible Style
Language (XSL)

externalization

Hypertext Markup
Language (HTML)

installed classes

instance method

interface

Java archive (JAR)

Java Database
Connectivity (JDBC)

Java datatypes

Java Development Kit

(JDK)

Java file

Java method signature

Java object

228

A metalanguage designed for Web applications that |ets you define your
own markup tags and attributes for different kinds of documents. XML is
asubset of SGML.

A markup language for querying XML documents stored in arelational
database. Adaptive Server provides an XQL query engine that can be
installed in Adaptive Server or run as a standal one program

A markup language designed to format XML documentsinto HTML or
other XML documents with different attributes and tags.

An externalization of a Javainstance is a byte stream that contains
sufficient information for the class to reconstruct the instance.
Externalization is defined by the externalizable interface. All Java-SQL
classes must be either externalizable or serializable. See serialization.

A subset of SGML designed for the Web.

Java classes and methods that have been placed in the Adaptive Server
system by the installjava utility.

A invoked method that references a specific instance of aclass.

A named collection of method declarations. A class can implement an
interface if the class defines all methods declared in the interface.

A platform-independent format for collecting classesin asinglefile.

A Java-SQL API that is a standard part of the Java Class Libraries that
control Javaapplication development. JDBC provides capabilities similar
to those of ODBC.

Java classes, either user-defined or from the JavaSoft API, or Java
primitive datatypes, such as boolean, byte, short, and int.

A toolset from Sun Microsystems that allows you to write and test Java
programs from the operating system.

A file of type “java’ (for example, myfile.java) that contains Java source
code. Seeclass file and Java archive (JAR).

The Java datatype of each parameter of a Java method.

Aninstance of aJavaclassthat is contained in the storage of the JavaVM.
Javainstances that are referenced in SQL are either values of Java
columns or Java objects.

Glossary

Java-SQL column

Java-SQL class

Java-SQL datatype
mapping

Java-SQL variable

Java Virtual Machine
(Java VM)

mappable

method

narrowing conversion

A SQL column whose datatypeis a Java-SQL class.

A public Javaclassthat has been installed in the Adaptive Server system.
It consists of aset of variable definitions and methods.

A class instance consists of an instance of each of the fields of the class.
Class instances are strongly typed by the class name.

A subclassisaclassthat is declared to extend (at most) to one other class.
That other classis called the direct superclass of the subclass. A subclass
hasall of the variablesand methods of itsdirect and indirect superclasses,
and may be used interchangeably with them.

Conversions between Java and SQL datatypes. See “ Datatype mapping
between Javaand SQL” on page 217.

A SQL variable whose datatype is a Java-SQL class.

The Javainterpreter that processes Javain the server. It isinvoked by the
SQL implementation.

A Java datatype is mappableif it is either:
e Listedinthefirst column of Table 12-3 on page 218, or

e A public Java-SQL classthat isinstalled in the Adaptive Server
system.

A SQL datatype is mappableif it is either:
e Listedinthefirst column of Table 12-4 on page 219, or

e A public Java-SQL classthat isbuilt-in or installed in the Adaptive
Server system.

A Javamethod is mappableif all of its parameter and result datatypes are
mappable.

A set of instructions, contained in a Java class, for performing atask. A
method can be declared static, in which caseit is called a class method.
Otherwise, it is an instance method. Class methods can be referenced by
qualifying the method name with either the class name or the name of an
instance of the class. Instance methods are referenced by qualifying the
method name with the name of an instance of the class. The method body
of an instance method can reference the variables local to that instance.

A Java operation for converting areference to a class instance to a
reference to an instance of a subclass of that class. This operationis
written in SQL with the convert function. See also widening conversion.

229

Glossary

package

procedure
public
retained JAR

serialization

SQL function signature

SQL-Java datatype
mapping

SQL procedure signature

static method

subclass

superclass

synonymous classes

Unicode

valid document

230

A packageisaset of related classes. A class either specifies a package or
is part of an anonymous default package. A class can use Javaimport
statementsto specify other packages whose classes can then be referenced.

An SQL stored procedure, or a Java method with a void result type.
Public fields and methods, as defined in Java.
See associated JAR.

A serialization of a Javainstanceis a byte stream containing sufficient
information to identify itsclassand reconstruct theinstance. All Java-SQL
classes must be either externalizable or serializable. See externalization.

The SQL datatype of each parameter of a SQLJ function.

Conversions between Java and SQL datatypes. See “ Datatype mapping
between Javaand SQL” on page 217.

The SQL datatype of each parameter of a SQLJ procedure.

A method invoked without referencing an object. Static methods affect the
whole class, not an instance of the class. Also called a class method.

A class below another classin ahierarchy. It inherits attributes and
behavior from classes above it. A subclass may be used interchangeably
with its superclasses. The class above the subclassisits direct superclass.
See superclass, narrowing conversion, and widening conversion.

A class above one or more classes in a hierarchy. It passes attributes and
behavior to the classes below it. It may not be used interchangeably with
its subclasses. See subclass, narrowing conversion, and widening
conversion.

Java-SQL classesthat have the samefully qualified namebut areinstalled
in different databases.

A 16-bit character set defined by 1SO 10646 that supports many
languages.

In XML, avalid document hasaDTD and adheresto it. It isalso awell-
formed document.

Glossary

variable

visible

well-formed document

widening conversion

In Java, avariableislocal to aclass, to instances of the class, or to a
method. A variable that is declared static islocal to the class. Other
variables declared in the class are local to instances of the class. Those
variables are called fields of the class. A variable declared in amethod is
local to the method.

A Javaclassthat hasbeeninstaled in aSQL systemisvisiblein SQL if it
isdeclared public; afield or method of aJavainstanceisvisiblein SQL if
it is both public and mappable. Visible classes, fields, and methods can be
referenced in SQL. Other classes, fields, and methods cannot, including

classes that are private, protected, or friendly, and fields and methods that
are either private, protected, or friendly, or are not mappable.

In XML, the necessary characteristics of awell-formed document include:
all elements with both start and end tags, attribute valuesin quotes, all
elements properly nested.

A Java operation for converting areference to a class instance to a
reference to an instance of a superclass of that class. This operation is
written in SQL with the convert function. See also narrowing conversion.

231

232

Index

Symbols

, (comma)
in SQL statements xvii
() (parentheses)
in SQL statements xvii
[] (square brackets)
in SQL statements xvii
>> (double angle)
to qualify Javafields and methods 223
@sign 82
{} (curly braces) in SQL statements xvii

A

access, server, to order elements 158
Adaptive Server

installing XQL 122

plug-in 27, 80
additional information

about Java 10

about XML 110
ADT mappable datatypes 98
alString, Javamethod 177
alter table

command 27, 123

syntax 27
ANS| standards 4
appendlitem, Javamethod 159
aseutils methods, com.sybase.xml.xgl.Xd|

methods, specificto 139
assignment properties

Java-SQL dataitems 32
assignments 205
attachingtoaJavaVM 183
attributes, embedded in element tags 113

B

bookstorexml

authorsexample 131

DTD conforming 132

filename 131

validate command 132

Web page 133

XML example 131
Boolean alString, Javamethod 164
Boolean expressions, within filter operators
Boolean someString, Java method 164
breaking

onaclassmethod 187

onalinenumber 186

using conditions 187

using counts 187

when execution isnot interrupted 188
breakpoints 186
building parse treewith XML parser 119
bypassing character-set conversions 118

C

caled on null input parameter 82
case expressions 37, 86
character encoding. See character sets
character sets
Adaptive server plug-in 80
client server 118
conversions, bypassing 118
declared matching actual 113
declared, actual 118
default UTF8 113
specifying 112
specifyingwith SAX 119
trandations, bypassed 113
unicode 27, 36, 80
XML 113,118

127

233

Index

XML data 118
character-set value, UTF8 default 118
character-string operationsin SQL 119
charindex command 119
child operator 125
classnames 220
class subtypes 36-38
classes. See Java classes
CLASSPATH
environment variable 122
environment variablesfor UNIX and NT 122
standalone program 122
xercesjar, xml.zip, runtimezip 122
clients
bcp 207
isg 207
client-side JDBC 7
code samples
HTML, Order example 114
XML, Info example 113
XML, Item example 114
column
declarations 221
referencing 222
column datatypes, requirements 25
column declarations 221
columnreferences 222
com 140
com.sybase.xml.xgl.store methods 140
com.sybase.xml.xgl.store.SybMemXml Stream, XQL
interface 140
com.sybase.xml.xql.Xql
methods, specificto 136, 137, 138, 140, 141
com.sybase.xml.xqgl.XqlDriver
command 121
locd files 130
querying XML documents 130
standalone program 130
syntax 130
using 130
comma (,) in SQL statements xvii
command main method 102

commands
dter table 123
charindex 119

com.sybase.xml.xgl.XqlDriver 121

234

createtable 26, 27

debug 130

drop function 86
FilelnputStream() 133

help 130

infile 130

insert 118

insert values clause of 118
new 122

outfile 130

parse 133

parse() 123

patindex 119

gstring 130

query 133

query() 128

sdlect 128,129

SQLJcreate function 81

SQLJ create procedure 87
substring 119

update 122

URL 133

vaid 132

validate 130, 132
whereclause 128

writetext 118

commands, create procedure SQLJ 90
compile-time datatypes 38
compiling Javacode 16
composing order documents 151
configuration parameter, Number of Java Sockets
configuring memory requirements 124
constructor method 28
constructors 28, 43

Order Xml 154

OrderXML 152

conventions

Java-SQL syntax xv
Transact-SQL syntax xvi
conversions 207

narrowing 37

widening 36

convert function 36, 207

create procedure (SQLJ) command 87, 90
create table command, syntax 26, 27
creating

202

and populating SQL tables 149
client applications 195
network applications, javanet 195
tables 26
user-defined classes 16
XSL stylesheets 118
curly braces ({}) in SQL statements xvii
customizing elements 113

D

data
selecting with XQL 121
trandating from XML 153
database objects
xmlcol 123,125
xmlimage 125
XMLTEXT 123
XQL, general query language for XML
DatagramPacket, Javaclass 196
datatype conversions 207
datatype mapping 35, 77, 98, 217-219
datatypes
char 111
compile-time 38
conversions 207
image 111, 123, 124
Javaclasses 3
method calls 224
runtime 38
text 111, 123,124
varchar 111
debug command 130
Debug.jar, Javafile 182
debugger
attachingtoaJavaVM 183
compiling classesfor 183
disconnecting 188
how it works 181
location 182
options 185
requirementsforusing 181
starting 182
wait mode 183
debugger capabilities

125

Index

browse classes 182
inspect and break on expressions 182
inspect and set variables 182
set break conditions 182
set breakpoints 182
trace execution 182
debugger windows
breakpoints 184
cdls 184
classes 184
connection 184
exceptions 184
inspection 184
locals 185
source 184
debugging
Java 181-193
debugging tutorial 189-193
attachingtoaJavaVM 190
examples 191
inspecting local variables 192
inspecting static variables 193
inspecting variables 191
loading sourcecode 190
modifying local variables 193
sourcecode 189
starting the debugger 189
stepping through source code 191
deleting 28, 97
Javaobjects 28
XML documents 124
delimited identifiers 219
descendant operator 125
deterministic parameter 82, 88
disabling Java 15
distinct keyword 46
Document Object Model (DOM) 119
document storage 148, 149, 154, 159, 173-180
entiredocument 149
fromclient and server 154
tables 151
Document Type Definition (DTD) 114
Document Type Definition. See DTD
document, ResultSet type 166
document, validating 132
DOM

235

Index

assembling parsetree 119
building document parsetree 119
generating parsetree 119

modifying document parsetree 119

object returned by SAX 119
portable across XML parsers 119
standard XML interface 119
DOM, Document Object Model 119
DOM. See Document Object Model
double angle
qualifying Java fields and methods
to qualify Java fields and methods
downloading
installed classes 21
installed JARs 21
drop function command 86
DTD 116
elementsof 116
for valid XML document 117
internal 117
not required in al documents 117
DTD, #iMPLIED 116
DTD, #PCDATA DTD elements 116
DTD, asterisk (*) 116
DTD, ATTLIST 116
DTD, document type definition 114
DTD, ELEMENT 116
DTD, plussign(+) 116
DTD, questionmark (?) 116
dynamic result sets parameter 88

E

element storage 148, 149, 151, 154
170173
extract elementsand store 149
element tags
customizing 113
embedded attributes 113
HTML, inconsistent 115
strict nesting 113
user-created 113
elements
extracting 153
referencing and updating 155

236

223
29

email

javanet 195

messages, sending 195
embedding DTD in XML 117
enabling Java 15
enabling java.net, procedure 196
equality operations 45
equals, operator 126
examples

for SQLJroutines 78
exceptions 31
explicit Java method signatures 99
eXtensible Markup Language (XML). See Extensible

Markup Language

Extensible Markup Language. See XML
Extensible Style Language. See XSL
external name parameter 88
external server, writing with javanet 197
externalization 221
extracting elements 153
extractjava utility 21

F

FilelnputStream(), command 133
filename, bookstorexml 131
filter operator 126
filter operator, using Boolean expressions 127
flushing data explicitly 202
formatting
instructions, provided in XSL 111
XML information with XSL 118

G

generating
document text from parsetree 119
Javaparsetree 119
generating order on client 152
getString, JDBC method 168
group by clause 46

H

help command 130
HoldString class 129
HTML
display of Order data 114
DTD elements 116, 118
element bracketing inconsistent 115
javadoc-generated pages 110
Order code sample 114
subset of SGML. See Standardized General Markup
Language
HTML, Hypertext Markup Language 109
HttpURL Connection, Javaclass 196
hybrid
storagetables 151
hybrid storage 148, 149, 159-160
store document in XQL column 149
technique, using 159
Hypertext Markup Language (HTML) 109

identifiers 219

delimited 219
image, datatype 123, 124
implicit Java method signatures 99
in parameter 90
inconsistent element tags, HTML 115
InetAddress, Javaclass 196
infile, command 130
info, XML code example 113
inout parameter 90
input sources, specifying with SAX 119
InputStream class 200
InputStream, Javaclass 201, 202
insert command, values clause of 118
inserting

datainatable 200

Javaobjects 28

XML document into database 118
installing

compressed JARS 17

Javaclasses 17,20

uncompressed JARS 17

XQL in Adaptive Server 122

Index

installjava utility 14, 17, 122
-f option 18

-j option 18

-new option 19

syntax 18

update option 19
instance methods 43
inter-class arguments 51

invoking
Javamethod, using SQLJ 79
Javamethods 30, 78

Java methods, invoking directly 78
Javamethods, using SQLJ 78
SQL fromJava 211, 217

J

JAR files

creating 17

installing 16

retaining 18

JARs

compressed, installing 17
uncompressed, installing 17
JavaAPl 8
accessingfromSQL 8
supported packages 208-211
Sybase support for 8
Javaarrays 91

Javaclass datatypes 84
Javaclasses 143
asdatatypes 3,25
creating 16
DatagramPacket 196
DatagramSocket 196
HoldString 129
HttpURL Connection
InetAddress

InputStream 197, 200, 202
installing 17-20

JXm 161

Xml 144

MailTo 200
MulticastSocket 196
Order 159

237

Index

OrderXML 143
OrderXml 143, 144, 161
OutputStream 197, 200
PrintWriter 202
referencing other classes 20
ResultSet 165
ResultSetXml 161
retained 21
runtime 14
savinginJAR 16
ServerSocket 196, 198
Socket
SQLJexamples 78
subtypes 36
supported 8
updating 19
URL 200, 201
URL class,using 198
URLConnection 196
URLDecoder 196
URLEncoder 196
user-defined 9,14
Java code
compiling 16
writing 16
Java commands. See commands
Javacompiler 183
Java constructor
OrderXml 144
Java constructor ResultSetXm 162
Java datatypes
ADT mappable 98
object mappable 98
output mappable 98
result-set mappable 99
simply mappable 98
Java Development Kit 6
Javain the database
advantagesof 1
capabilities 2
key features 5
preparing for 13-22
questionsand answers 5
Javainstances, representing 32
Javamethod signature 83, 88
Java methods

238

177

alstring 177

Boolean allString 164

Boolean someString 164

cal by reference 31, 46

command main 102

constructor ResultSetXml 162

exceptions 31

getString, JDBC 168

instance 43

invoking 30, 78

OrderXml 144

ResultXml example 162

static 45

static void createOrderTable 145

String getColumn 163

String getitemElement 145

String toSglScript 162

toSqlScript() 172

type 42,43

void 43

void appenditem 147

void deleteltem(int itemNumber) 147

void order2Sgl(String ordersTableName, String

server) 144

void setColumn 163, 164

void setltemElement 146

void setOrderElement 145

XQL 136
javamethods

See also XQL methods
Java methods, specific to com.sybase.xml.xgl.Xgl 136
Javaobjects 28
Java operations, invoked fromSQL 7
Javaprimitive datatypes 84
Javaruntime environment 13
Java Services

increasing default memory parameters 121

memory requirementstable 124

table, memory parameters 125
JavaVM 7,13
JavaVM parameters

size of global fixedheap 197

size of process object heap 197

size of shared classheap 197
Java, SQL, using together 7

javanet 196, 197, 198, 202
accessing documents using XML, JDBC 195
accessing external documents 197
cautions 202
classes
client application, settingup 197
client process 198
client process procedure 198
connecting through JDBC with jconnect 195
creating networking applications 195
downloading documents 195
enabling 196
examples 197
help 202
mailing documents 197
objects not serializable 202
procedure for enabling 196
reference documents 202
references, online 202
references, written 202
saving documents 195
saving text from Adaptive Server 197
sending email messages 195
server process 198
server process procedure 198
writing external server 197

java.net classes
HttpURL Connection 196
InetAddress 196
See Java classes
Socket 196
URL 196
URLConnection 196
URLDecoder 196
URLEncoder 196

javanet, for network access 195

javasgl 211

java.sgl methods, unsupported 209

javadoc, generating HTML 110

Java-SQL
classnames 220
column declarations 221
column references 222
columns 33,47
creating tables 26
function results 33

identifiers 219
member references 223
method calls 224
names 24
package names 220
parameters 33, 47
static variables 48
transferring objects 207
transferring objectsto clients 207
unsupported methods 209
variable declarations 221
variables 33, 47
Java-SQL classes
in multiple databases 48
installing 17-20
Java-SQL columns
storage options 26
jConnect
JbBC 7
OrderXml inclient 152
jconnect 195
jConnect, used by OrderXml in client
JOBC 57-74
accessing data 60
client-side 7,58
concepts 58
connection defaults 59
connections 62
interface 9
JDBCExamplesclass 60
obtaining aconnection 62
permissions 59
ResultSet class 165
ResultSetMetaDataclass 168
server-side 7,58
terminology 58
version support 14
JDBC drivers 14, 211
client-side 7,58
jConnect 7
server-side 7,58
used by OrderXml in server 152
JDBC standard datatype mapping 98
JDBCExamplesclass 69-74
methods 61-66
overview 60

152

Index

239

Index

L narrowing conversions 37
navigating XQL 125
network access, javanet 195
new, command 122
null values
case statements 86
M in SQLJfunctions 84
nullsinJavaSQL 3842
argumentsto methods 40
using convert functions 41
Number of Java Sockets, configuration parameter 202

language java parameter 88
local files, com.sybase.xml.xgl.XqlDriver 130

mailing adocument 197
MailTo, Javaclass 200
main() method, executed on client 156
mapping datatypes 217-219
mapping Java and SQL datatypes 98
mapping, illustrating with orderstable 170
member references 223 O
memory parameters, Java Services, table 125
memory reguirements

configurng 124

for query engine 124

Java Services 124

object mappable datatypes 98
obtaining connections 62
Open Client CT-Library 118
Open Client DB-Library 118

memory regquirements, Java Services parameters 121 ope;a];[lodrs 195
method calls 224
descendant 125

datatypeof 224 equal 126
method overloading 101, 224 .

ethod filter 126
methoas subscript 127

appenditem 159 ;

tions 31 options

excep . external name 83

main() executed on client 156 lanquage iava 83

order2sql 153 guage]

parameter stylejava 83
saxparser 131
options, storage, advantages and disadvantages 148
order
generating on client 152
generating on server 152
order by clauses 46
Order DTD, samplecode 116
order elements, server accessto 158
Order sample
HTML 114
XML code 111
Order, Javaclass 159
order2Sql, method 153
N ordering operations 45
. orderstable 165
namesin Java-SQL 24 orderstable, using 170

case 25 OrderXML
length 24

runtime results 225

See also XQL methods

SQL JExamples.bestTwoEmps() 78

SQL JExamples.correctStates() 78, 89

SQLJExamplesjob() 78

SQLJExamples.region() 78

to reference and update elements 155
methods. See Java methods
modifies sql data parameter 82, 88
MulticastSocket, Javaclass 196
multiple databases 49

240

Javaclass 143
OrderXml 143
class 143

constructor invoked from server 154

Javaclass 143, 161
sample application 143
sampleclass 143
sourcecode 143
subclass of IJXml class 144
OrderXml, Javamethod 144
out parameter 90
outfile, command 130
output HTML, from XSL 118
output mappable datatypes 98

P

package names 220
parameter style javaparameter 88
parameters

130

(JavaVM) size of global fixed heap 197
(JavaVM) size of processobject heap 197
(JavaVM) size of shared classheap 197

deterministic 88
externa name 88
help 130

inout 90

input 90
languagejava 88
modifiessgl data 88
not deterministic 88
output 90

parameter stylejava 88
gstring 130

validate 130
parentheses ()

in SQL statements xvii
parsecommand 133
parse methods 136
parsetree

assembling with DOM 119
build or modify 119

generating document’ stext from 119

generating Javarepresentation 119

Index

parse tree, building and modifying with DOM 119
parse()

command 123

returns sybase.aseutils.SybXmlStream 123
parse(), Java method, command 123
parse(InputStream xmlll_document), XML method

137

parse(String xmiDoc), XQL method 136
parser, XML 121
parsersfor XML 119
parsers, XML 119
patindex command 119
permissions

Java 7,24

JOBC 59

SQLJroutines 77
persistent dataitems 33
plussign (+) in XML document type definition 116
presentation applications, use of XSL for 118
PrintWriter, Javaclass 202
procedure

creating SQLJroutine 76

enabling javanet 196
procedures

client process, java.net 198

server process, java.net 198
processing

effect of whereclause 128
processing with SAX, incremental 119
processing XML, specialized 143

Q

gstring command 130
query
command 133
query engine
as standaone program 121
inside or outside server 121
memory requirements 124
query methods, com.sybase.xml.xgl.Xqgl 138
methods, specificto 138, 139
query structures 128
query() command 128

241

Index

query(String query, InputStream xmiDoc), XQL method
138

query(String query, String xmiDoc), XML method 138

query(String query,JXml jxml), XQL method 139

query(String query,SybXmlStream xmiDoc), XQL method
139

querying XML with com.sybasexml.xgl.XglDriver 130

questionsand answers 5

R

reading XML from database 118
rearranging installed classes 21
referencing
fields 29
XML DTD externally 117
remove javacommand 21, 221
removing classes 21
removing JARs 21
restrictions on Javain the database 10
result sets 101
not stored in where clause 129
unexpected result 129
ResultSet
accessing columns of stored documents 174
class 161
composing document from SQL 170
document type 166
DTD 169
generating in Adaptive Server 171
generating inclient 171
Javaclass 165
JDBCclass 166
mappable datatypes 98
quantified comparisonsin stored documents 177
quantifier in select list 179
quantifier inwhereclause 179
search methods 177
selecting and updating columns
server-side script 176
storing document in SQL column 173
trandatinginclient 172
ResultSetData 165
ResultSetMetaData 165
ResultSetMetaData for exampleresult 166

176-177

242

ResultSetMetaData, JDBC class 168
ResultSetXml 161

accessing XML 161

directories, XML 161

processing SQL result sets 161

similar to OrderXml class 161

sourcecode 161

source code, XML 161

subclass of JXml class 161

subset of IXml class 161

writing Java code to access XML 161
ResultSetXml(String), Javamethod 162
ResultXml example, Javamethod 162
returns null on null input parameter, Javaclause 82
runtime

datatypes 38
Runtime environment 13
Runtime Java classes

locationof 14
runtime Javaclasses 14

S

sampleclasses 52-55

address 52

address2Line 53

JDBCExamples 60-74

location of 11

misc 55

OrderXml 143

ResultSet 165
sample code

DTD, Order example 116

HTML, Order sample 114

XML, Info example 113

XML, Order example DTD 116
saving text out of Adaptive server 197
SAX

generating events 119

portable across XML parsers 119

returning DOM object 119

standard XML interface 119
SAX (Simple API for XML) 119
saxparser, com.sybase.xml.xgl.XqlDriver option 131
search order

functiontypes 84
searching, XML documents stored onWeb 110
security

SQLJroutines 77
select command 128, 129
selecting datawith XQL 121
selecting Javaobjects 28
seridlization 221,222
server access to order elements 158
server process 198
server-sideJDBC 7
ServerSocket, Javaclass 196, 198
set commands

alowed in Javamethods 216

updating 44
setParser, XQL method 140
settingup 196
SGML, Standardized General Markup Language 109
shared classheap 196
simple APl for XML (SAX) 119
simply mappable datatypes 98
Socket classes, using 197
Socket, Javaclass 196
someString, Javamethod 177
sp_configure system procedure 15
sp_depends system procedure 97
sp_help system procedure 97
sp_helpjava

syntax 20

utilitysp_helpjava 20
sp_helpjava system procedure 98
sp_helprotect system procedure 98
specialized XML processing 143
specifying character set 112
SQL

character-string operations 119

expressions, include Javaobjects 7

function signature 82

procedure signature 88

tables, creating and populating 149

wrappers 75,79
SQLJ create procedure command 87
SQLJfunctions 81-86

dropping 86

viewing information about 97
SQLJimplementation

Index

features not supported 103
features partially supported 103
SQLJand Sybase differences 102
Sybase defined 104
SQLJstandards 76
SQLJ stored procedures 87-89, 97
capabilitiesof 87
deleting 97
modifying SQL data 89
using input and output parameters 90
viewing information about 97
SQLJExamplesclass 105
SQL JExamples.best TwoEmps() method 78
SQL JExamples.correctStates() method 78, 89
SQLJExamples,job() method 78
SQLJExamples.region() method 78, 83
sguare brackets|]
in SQL statements xvii
standal one applications
example 133
using XQL 133
standal one program,com.sybase.xml.xgl.XglDriver
130
Standardized General Markup Language (SGML) 109
standards specifications 4
static methods 45, 77, 79, 87
static variables 48
static void createOrderTable, Javamethod 145
storage
document 149
element 149
hybrid 149
storage options
advantages and disadvantages 148
inrow 26
storage tables, document and hybrid 151
storage technique, hybrid, using 159
storage, document 154
storage, element 149
storage, hybrid 149
storing XML documents 147
parameters
infile 130
outfile 130
String data
zerolength 42

243

Index

string data 42
String getColumn, Javamethod 163
String getltemElement, Java method 145
String toSql Script, Javamethod 162
structures, query 128
stylejavakeyword 88
style sheets, creating 118
style sheets, XSL 118
subscript operator 127
substring command 119
subtypes 36
supertypes 36
Sybase Central
creating a SQL J function or procedure from 80
managing SQLJ procedures and functions from 80
viewing SQLJroutine propertiesfrom 81
sybase.asciutils 139
sybase.aseutils.SybXml Stream, returned by parse()
command 123
SybFileXmlStream, XQL method 140
SybXmlStream 136
varidble 136
syntax conventions
Java-SQL xv
Transact-SQL xvi
system procedures
helpjava 20
sp_depends 97
sp_help 97
sp_helpjava 98
sp_helprotect 98

T

table definition 78

table, orders 165

tags
customizingin XML 111
HTML, inconsistent bracketing 115
HTML, paragraph 115
user-created 113
XML strictly nested 112

temporary databases 51

text data, XML 113

text, datatype 123, 124

244

toSqlScript(), Javamethod 172
transact-SQL

commands, in Javamethods 212
transient dataitems 33
trandating data 151, 153

U

unicode 42
union operator 46
update, command 122
updating Java objects 28
updating XML documents 124
URL
Javaclass 198
URL class
accessing external server with XQL 200
downloading HTTP document 200
inserting datain atable 200
Javaclass 196, 200, 201
obtaining an HTTP document 200
sending email 200
using 200
URL, command 133
URLConnection, Javaclass 196
URLDecoder, Javaclass 196
URLEncoder, Javaclass 196
user-created element tags 113
user-defined classes, creating 16
using
com.sybase.xml.xgl.XqlDriver 130
hybrid storage technique 159
Javaand SQL together 7
Javaclasses 23,52
orderstable 170
Socket classes 197
URL class 198
UTFS8, default character set 113, 118

Vv

valid XML document 117
valid, command 132
validate, command 130, 132

validating document 132
variable declarations 221
variables 221
datatypesof 25
static 48
SybXmiStream 136
valuesassignedto 28
variables, HTML
. 115
<table>...</table>, layout 115
bcolor, color 115
CustomerlD 114, 115
CustomerName 115
Data 115
ItemID 114
ItemName 114
order 114
Quantities 115
Quantity 114
units 114
variables, XML
OrderXML 110
tag 112
XMLResultSet 110
viewing information
about installed classes 20
about installed JARs 20
void appenditem, Javamethod 147
void deleteltem(int itemNumber), Javamethod 147
void methods 89
void order2Sgl(String ordersTableName, String
server), Javamethod 144
void setColumn, Javamethod 163, 164
void setltemElement, javamethod 146
void setOrderElement, Javamethod 145

W

Web addresses
W3C, Document Object Model (DOM) 110
W3C, Extensible Markup Language (XML) 110
W3C, Extensible Stylesheet Language (XSL)
110
World Wide Web Consortium (W3C) 110
Web informationon XML 110

Index

Web, storage for XML documents 133
well-formed XML document 113
where clause 36, 44, 47
affectsprocessing 128
command 128
not for result set storage 129
work databases 51
writetext, command 118

X

xercesjar
directory 123

XML 109
accessing documents with javanet 195
additional information 110
application-specific document types 111
character sets, client and server 118
compared to SGML and HTML 111
comparison withHTML 109
customtags 111
customizable example 165
declaring character sets 118
DTD (document type definition) 114
DTD elements, restrictions 116, 118
DTD not required in all documents 117
DTD sample code, embedding 117
DTD sample code, referencing externally 117
DTD, instruction 116, 118
Extensible Markup Language
input from XSL 118
overview 110, 111
parser, outside or inside server 121
parsers 119
read by HTML browsers and processors 111
sample document 111
source code for sampleclasses 110
specialized processing 143
storage options, prosand cons 148
gtrict phrase structure 111
subset of SGML 109
suitable for datainterchange 109
toolswritteninJava 110
using XSL totransform 118
Web documents for detailed information 110

245

Index

XML data
document storage document storage, XML data 148

element storage 148
inserting from client file 155

XML data operations

server-side 149

accessing elements 155
accessing in XQL 147
ascharacter data 112
character-set value 118
client or server 147

XML declaration, to specify character set 112
XML document

XML parser 119

applications using SAX and DOM portable

freelicense 119

public domain 119

standard interface 119

standard interfaces 119
XML parsing with SAX 119

XML Query Language (XQL) 110

xml.zip, directory 123

xmlcol, database object 123, 125
xmlimage, database object 125
XMLTEXT, database object 123
XQL

deleting 124
DTD samplecode 116
example, info 113
executing on server 155
formatting for 118
generating from Adaptive Server 110
generating from SQL data 109
inserting into database 118
mapping and storage 147
nested markup tags 112
no formatting instructions 113
patsof 112
querying 130
reading from database 118
sample code, Order 111
searchwith XQL 110
searchingon Web 110
stored as OSfile 133
storedonWeb 133
storing 147
storing in Adaptive Server 110
updating 124
vaidwithDTD 117
well-formed 113
XML document types
Order 165
ResultSet 165
XML example, bookstorexml 131
XML methods
parse(InputStream xml_document) 137
query(String query, String xmiDoc) 138
XML operations
client-side 149

246

developing standal one applications
displayingas XML 121

EJBs 133

installing in Adaptive Server 122
interface,

133

119

com.sybase.xml.xgl.store.SybMemXml Stream

140

JavaBeans 133
JDBCclients 133
navigation 125
numbering system 131
operators 125
parsemethod 202
parsesand queries 202

path-based query language 110, 125

query method 202
to search XML documents 110
zerobased 131

XQL methods 136

parse(String xmiDoc) 136

query(String query, InputStream xmlDoc)
query(String query, JXml jxml) 139

query(String query, SybXmlStream xmIDaoc)

setParser 140
SybFileXmlStream 140
SybXmlStream 139

XQL, XML Query Language 110
XSL 118

Extensible Style Language 111

formatting XML information 118

specifications 118
transforms XML 118

using with presentation applications 118

138

139

Index

Z

zero-length strings 42

247

Index

248

	Java in Adaptive Server Enterprise
	About This Book
	CHAPTER 1 An Introduction to Java in the Database
	Advantages of Java in the database
	Capabilities of Java in the database
	Invoking Java methods in the database
	Invoking Java methods directly in SQL
	Invoking Java methods as SQLJ stored procedures and functions

	Storing Java classes as datatypes
	Storing and querying XML in the database

	Standards
	Java in the database: questions and answers
	What are the key features?
	How can I store Java instructions in the database?
	How is Java executed in the database?
	Client- and server-side JDBC

	How can I use Java and SQL together?
	What is the Java API?
	How can I access the Java API from SQL?
	Which Java classes are supported in the Java API?
	Can I install my own Java classes?
	Can I access data using Java?
	Can I use the same classes on client and server?
	How do I use Java classes in SQL?
	Where can I find information about Java in the database?
	What you cannot do with Java in the database

	Sample Java classes

	CHAPTER 2 Preparing for and Maintaining Java in the Database
	The Java runtime environment
	Java classes in the database
	Sybase runtime Java classes
	User-defined Java classes

	JDBC drivers
	The Java VM

	Configuring memory for Java in the database
	Enabling the server for Java
	Disabling the server for Java

	Creating Java classes and JARs
	Writing the Java code
	Compiling Java code
	Saving classes in a JAR file
	Installing uncompressed JARs
	Installing compressed JARs

	Installing Java classes in the database
	Using installjava
	Retaining the JAR file
	Updating installed classes

	Referencing other Java-SQL classes

	Viewing information about installed classes and JARs
	Downloading installed classes and JARs
	Removing classes and JARs
	Retaining classes

	CHAPTER 3 Using Java Classes in SQL
	General concepts
	Java considerations
	Java-SQL names

	Using Java classes as datatypes
	Creating and altering tables with Java-SQL columns
	Altering partitioned tables

	Selecting, inserting, updating, and deleting Java objects

	Invoking Java methods in SQL
	Sample methods
	Exceptions in Java-SQL methods

	Representing Java instances
	Assignment properties of Java-SQL data items
	Datatype mapping between Java and SQL fields
	Character sets for data and identifiers
	Subtypes in Java-SQL data
	Widening conversions
	Narrowing conversions
	Runtime versus compile-time datatypes

	The treatment of nulls in Java-SQL data
	References to fields and methods of null instances
	Null values as arguments to Java-SQL methods
	Null values when using the SQL convert function

	Java-SQL string data
	Zero-length strings

	Type and void methods
	Java void instance methods
	Java void static methods

	Equality and ordering operations
	Evaluation order and Java method calls
	Columns
	Variables and parameters

	Static variables in Java-SQL classes
	Java classes in multiple databases
	Scope
	Cross-database references
	Inter-class transfers
	Passing inter-class arguments
	Temporary and work databases

	Java classes

	CHAPTER 4 Data Access Using JDBC
	Overview
	JDBC concepts and terminology
	Differences between client- and server-side JDBC
	Permissions
	Using JDBC to access data
	Overview of the JDBCExamples class
	The main() and serverMain() methods
	Using main()
	Using serverMain()

	Obtaining a JDBC connection: the Connecter() method
	Routing the action to other methods: the doAction() method
	Executing imperative SQL operations: the doSQL() method
	Executing an update statement: the UpdateAction() method
	Executing a select statement: the selectAction() method
	Calling a SQL stored procedure: the callAction() method

	Error handling in the native JDBC driver
	The JDBCExamples class
	The main() method
	The internalMain() method
	The connecter() method
	The doAction() method
	The doSQL() method
	The updateAction() method
	The selectAction() method
	The callAction() method

	CHAPTER 5 SQLJ Functions and Stored Procedures
	Overview
	Compliance with SQLJ Part 1 specifications
	General issues
	Security and permissions
	SQLJExamples

	Invoking Java methods in Adaptive Server
	Using Sybase Central to manage SQLJ functions and procedures
	SQLJ user-defined functions
	Handling null argument values
	Handling nulls when creating the function
	Handling nulls in the function call

	Deleting a SQLJ function name

	SQLJ stored procedures
	Modifying SQL data
	Using input and output parameters
	Returning result sets
	Deleting a SQLJ stored procedure name

	Viewing information about SQLJ functions and procedures
	Advanced topics
	Mapping Java and SQL datatypes
	Using the command main method

	SQLJ and Sybase implementation: a comparison
	SQLJExamples class

	CHAPTER 6 Introduction to XML in the Database
	Introduction
	Source code and javadoc
	References

	An overview of XML
	A sample XML document
	HTML display of Order data

	XML document types
	XSL: formatting XML information
	Character sets and XML data
	XML parsers

	CHAPTER 7 Selecting Data with XQL
	Accessing the XML parser
	Setting the CLASSPATH environment variable
	Installing XQL in Adaptive Server
	Converting a raw XML document to a parsed version
	Inserting XML documents
	Updating XML documents
	Deleting XML documents
	Memory requirements for running the query engine inside Adaptive Server
	Using XQL
	Query structures that affect performance
	Examples

	Other usages of the XQL package
	com.sybase.xml.xql.XqlDriver syntax
	Sample queries

	Validating your document
	Using XQL to develop standalone applications
	Example standalone application
	Example JDBC client
	Example EJB example

	XQL methods
	Methods in com.sybase.xml.xql.Xql
	parse(String xmlDoc)
	parse(InputStream xml_document, boolean validate)
	query(String query, String xmlDoc)
	query(String query, InputStream xmlDoc)
	query(String query, SybXmlStream xmlDoc)
	query(String query, JXml jxml)
	sybase.aseutils.SybXmlStream
	com.sybase.xml.xql.store.SybMemXmlStream
	com.sybase.xml.xql.store.SybFileXmlStream
	setParser(String parserName)
	reSetParser

	CHAPTER 8 Specialized XML Processing
	The OrderXml class for order documents
	OrderXml(String) constructor
	OrderXml(date, customerid, server)
	void order2Sql(String ordersTableName, String server)
	static void createOrderTable (String ordersTableName, String server)
	void setOrderElement (String elementName, String newValue)
	String getItemElement (int itemNumber, String elementName)
	void setItemElement (int itemNumber, String elementName, String newValue
	String getItemAttribute (int itemNumber, elementName, attributeName)
	void setItemAttribute (int itemNumber, elementName, attributeName, newValue)
	void appendItem (newItemid, newItemName, newQuantity, newUnit)
	void deleteItem(int itemNumber)

	Storing XML documents
	Mapping and storage
	Advantages and disadvantages of storage options
	Client or server considerations

	Creating and populating SQL tables for order data
	Tables for element storage
	Tables for document and hybrid storage

	Using the element storage technique
	Composing order documents from SQL data
	Generating an order on the client
	Generating an order on the server

	Translating data from an XML order into SQL
	Translating the XML document on the client
	Translating the XML document on the server

	Using the document storage technique
	Storing XML order documents in SQL columns
	Inserting an order document from a client file
	Inserting a generated order document on the server

	Accessing the elements of stored XML order documents
	Client access to order elements

	Server access to order elements
	Appending and deleting items in the XML document

	Using the hybrid storage technique

	CHAPTER 9 XML for SQL Result Sets
	The ResultSetXML class
	ResultSetXml(String)
	Constructor: ResultSetXml (query, cdataColumns, colNames, server)
	ResultXml example
	String toSqlScript (resultTableName, columnPrefix, goOption)
	String getColumn(int rowNumber, int columnNumber)
	String getColumn(int rowNumber, String columnName)
	void setColumn (int rowNumber, int columnNumber, newValue)
	void setColumn (int rowNumber, String columnName, newValue)
	Boolean allString (int ColumnNumber, String compOp, String comparand)
	Boolean someString (int columnNumber, String compOp, String comparand)

	A customizable example for different result sets
	The ResultSet document type
	The XML DTD for the ResultSetXml document type

	Using the element storage technique
	Composing a ResultSet XML document from the SQL data

	Generating a ResultSet in the client
	Generating a result set in Adaptive Server
	Translating the XML ResultSet document in the client
	Translating the XML ResultSet Document in Adaptive Server
	Using the document storage technique
	Storing an XML ResultSet document in a SQL column
	Accessing the columns of stored ResultSet documents
	A client-side call
	A server-side script

	Quantified comparisons in stored ResultSet documents

	CHAPTER 10 Debugging Java in the Database
	Introduction to debugging Java
	How the debugger works
	Requirements for using the Java debugger
	What you can do with the debugger

	Using the debugger
	Starting the debugger and connecting to the database
	Compiling classes for debugging
	Attaching to a Java VM
	The Source window
	The debugger windows

	Options
	Setting breakpoints
	Breaking on a line number
	Breaking on a static method
	Using counts with breakpoints
	Using conditions with breakpoints
	Breaking when execution is not interrupted

	Disconnecting from the database

	A debugging tutorial
	Before you begin
	Start the Java debugger and connect to the database
	Attach to a Java VM
	Load source code into the debugger
	Step through source code
	Examples

	Inspecting and modifying variables
	Inspecting local variables
	Modifying local variables
	Inspecting static variables

	CHAPTER 11 Network Access Using java.net
	Overview
	java.net classes
	Setting up java.net
	Example usage
	Using socket classes
	Saving text out of Adaptive Server

	Using the URL class
	Using the MailTo class URL to mail a document
	Obtaining an HTTP document
	Accessing an external document with XQL

	User notes
	Where to go for help

	CHAPTER 12 Reference Topics
	Assignments
	Assignment rules at compile-time
	Assignment rules at runtime

	Allowed conversions
	Transferring Java-SQL objects to clients
	Supported Java API packages, classes, and methods
	Supported Java packages and classes
	Unsupported Java packages and classes
	Unsupported java.sql methods and interfaces

	Invoking SQL from Java
	Special considerations

	Transact-SQL commands from Java methods
	Datatype mapping between Java and SQL
	Java-SQL identifiers
	Java-SQL class and package names
	Java-SQL column declarations
	Java-SQL variable declarations
	Java-SQL column references
	Java-SQL member references
	Java-SQL method calls

	Glossary
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

